Hydrological changes in the Upper Yellow River under the impact of upstream cascade reservoirs over the past 70 years

IF 4.7 2区 地球科学 Q1 WATER RESOURCES
Jing Hu , Xiong Zhou , Yujun Yi , Chunhui Li , Xuan Wang , Qiang Liu , Jiansu Mao
{"title":"Hydrological changes in the Upper Yellow River under the impact of upstream cascade reservoirs over the past 70 years","authors":"Jing Hu ,&nbsp;Xiong Zhou ,&nbsp;Yujun Yi ,&nbsp;Chunhui Li ,&nbsp;Xuan Wang ,&nbsp;Qiang Liu ,&nbsp;Jiansu Mao","doi":"10.1016/j.ejrh.2024.102105","DOIUrl":null,"url":null,"abstract":"<div><h3>Study region</h3><div>The Upper Yellow River Basin (UYRB), China.</div></div><div><h3>Study focus</h3><div>In this study, a variety of mathematical statistical methods, the Indicators of Hydrologic Alteration—Range of Variability (IHA-RVA) method, and the newly proposed Flow Surplus-Deficit (QS-QD) method were integrated to analyze the impact of cascade dam development on hydrological changes over the past 70 years in the UYRB. Additionally, the Double Mass Curve (DMC) method was utilized to evaluate changes in annual sediment transport, quantifying the influences of precipitation and human activities.</div></div><div><h3>New hydrological insights for the region</h3><div>Long-term statistical analysis revealed significant declining trends in both the annual runoff and sediment load following dam construction. Abrupt changes in runoff and sediment were identified during the study period in 1969 and 1987. Dam operations have altered the relationship between water and sediment, resulting in intensified summer flow deficits and winter-spring flow surpluses, with significant increases in flow deficit during July. The operation of the Longyangxia Reservoir and Liujiaxia Reservoir cascade systems exhibits cumulative effects over time and space. The proposed QS-QD method quantitatively estimates monthly flow variations and effectively addresses the limitations of RVA variation based on frequency. Furthermore, sediment transport at hydrological stations indicated a sequential downstream decrease, with human activities contributing between 95.93 % and 116.51 % to these changes.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"57 ","pages":"Article 102105"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology-Regional Studies","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214581824004543","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Study region

The Upper Yellow River Basin (UYRB), China.

Study focus

In this study, a variety of mathematical statistical methods, the Indicators of Hydrologic Alteration—Range of Variability (IHA-RVA) method, and the newly proposed Flow Surplus-Deficit (QS-QD) method were integrated to analyze the impact of cascade dam development on hydrological changes over the past 70 years in the UYRB. Additionally, the Double Mass Curve (DMC) method was utilized to evaluate changes in annual sediment transport, quantifying the influences of precipitation and human activities.

New hydrological insights for the region

Long-term statistical analysis revealed significant declining trends in both the annual runoff and sediment load following dam construction. Abrupt changes in runoff and sediment were identified during the study period in 1969 and 1987. Dam operations have altered the relationship between water and sediment, resulting in intensified summer flow deficits and winter-spring flow surpluses, with significant increases in flow deficit during July. The operation of the Longyangxia Reservoir and Liujiaxia Reservoir cascade systems exhibits cumulative effects over time and space. The proposed QS-QD method quantitatively estimates monthly flow variations and effectively addresses the limitations of RVA variation based on frequency. Furthermore, sediment transport at hydrological stations indicated a sequential downstream decrease, with human activities contributing between 95.93 % and 116.51 % to these changes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hydrology-Regional Studies
Journal of Hydrology-Regional Studies Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
6.70
自引率
8.50%
发文量
284
审稿时长
60 days
期刊介绍: Journal of Hydrology: Regional Studies publishes original research papers enhancing the science of hydrology and aiming at region-specific problems, past and future conditions, analysis, review and solutions. The journal particularly welcomes research papers that deliver new insights into region-specific hydrological processes and responses to changing conditions, as well as contributions that incorporate interdisciplinarity and translational science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信