{"title":"QCD condensates and αs from τ-decay","authors":"Stephan Narison","doi":"10.1016/j.nuclphysa.2024.123014","DOIUrl":null,"url":null,"abstract":"<div><div>We improve the determinations of the QCD condensates within the SVZ expansion in the axial-vector (A) channel using the ratio of Laplace sum rule (LSR) <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mn>10</mn></mrow><mrow><mi>A</mi></mrow></msubsup><mo>(</mo><mi>τ</mi><mo>)</mo></math></span> within stability criteria and <em>τ</em>-like higher moments <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>A</mi></mrow></msub></math></span> within stability for arbitrary <em>τ</em>-mass squared <span><math><msub><mrow><mi>s</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. We find the same violation of the factorization by a factor 6 of the four-quark condensate as from <span><math><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>→</mo></math></span> Hadrons data. One can notice a systematic alternate sign and no exponential growth of the size of these condensates. Then, we extract <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> from the lowest <em>τ</em>-decay like moment. We obtain to order <span><math><msubsup><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>4</mn></mrow></msubsup></math></span> the conservative value from the <span><math><msub><mrow><mi>s</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-stability until <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>A</mi></mrow></msub><mo>=</mo><mn>0.3178</mn><mo>(</mo><mn>66</mn><mo>)</mo></math></span> (FO) and 0.3380 (44) (CI) leading to: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>A</mi></mrow></msub><mo>=</mo><mn>0.1182</mn><msub><mrow><mo>(</mo><mn>8</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi><mo>.</mo></mrow></msub></math></span> (FO) and <span><math><mn>0.1206</mn><msub><mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi><mo>.</mo></mrow></msub></math></span> (CI). We extend the analysis to the V–A channel and find: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>V</mi><mo>−</mo><mi>A</mi></mrow></msub><mo>=</mo><mn>0.3135</mn><mo>(</mo><mn>83</mn><mo>)</mo></math></span> (FO) and 0.3322 (81) (CI) leading to: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>V</mi><mo>−</mo><mi>A</mi></mrow></msub><mo>=</mo><mn>0.1177</mn><msub><mrow><mo>(</mo><mn>10</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi><mo>.</mo></mrow></msub></math></span> (FO) and <span><math><mn>0.1200</mn><msub><mrow><mo>(</mo><mn>9</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi><mo>.</mo></mrow></msub></math></span> (CI). We observe that in different channels (<span><math><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>→</mo></math></span> Hadrons, A, V–A), the extraction of <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo></math></span> at the observed <em>τ</em>-mass leads to an overestimate of its value. Our determinations from these different channels lead to the mean: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>0.3140</mn><mo>(</mo><mn>44</mn><mo>)</mo></math></span> (FO) and 0.3346 (35) (CI) corresponding to: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>0.1178</mn><msub><mrow><mo>(</mo><mn>6</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi><mo>.</mo></mrow></msub></math></span> (FO) and <span><math><mn>0.1202</mn><msub><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi><mo>.</mo></mrow></msub></math></span> (CI). Comparisons with some other results are done.</div></div>","PeriodicalId":19246,"journal":{"name":"Nuclear Physics A","volume":"1055 ","pages":"Article 123014"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375947424001969","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
We improve the determinations of the QCD condensates within the SVZ expansion in the axial-vector (A) channel using the ratio of Laplace sum rule (LSR) within stability criteria and τ-like higher moments within stability for arbitrary τ-mass squared . We find the same violation of the factorization by a factor 6 of the four-quark condensate as from Hadrons data. One can notice a systematic alternate sign and no exponential growth of the size of these condensates. Then, we extract from the lowest τ-decay like moment. We obtain to order the conservative value from the -stability until : (FO) and 0.3380 (44) (CI) leading to: (FO) and (CI). We extend the analysis to the V–A channel and find: (FO) and 0.3322 (81) (CI) leading to: (FO) and (CI). We observe that in different channels ( Hadrons, A, V–A), the extraction of at the observed τ-mass leads to an overestimate of its value. Our determinations from these different channels lead to the mean: (FO) and 0.3346 (35) (CI) corresponding to: (FO) and (CI). Comparisons with some other results are done.
期刊介绍:
Nuclear Physics A focuses on the domain of nuclear and hadronic physics and includes the following subsections: Nuclear Structure and Dynamics; Intermediate and High Energy Heavy Ion Physics; Hadronic Physics; Electromagnetic and Weak Interactions; Nuclear Astrophysics. The emphasis is on original research papers. A number of carefully selected and reviewed conference proceedings are published as an integral part of the journal.