Machine learning for human mobility during disasters: A systematic literature review

IF 2.6 Q3 ENVIRONMENTAL SCIENCES
Jonas Gunkel , Max Mühlhäuser , Andrea Tundis
{"title":"Machine learning for human mobility during disasters: A systematic literature review","authors":"Jonas Gunkel ,&nbsp;Max Mühlhäuser ,&nbsp;Andrea Tundis","doi":"10.1016/j.pdisas.2025.100405","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding and predicting human mobility during disasters is crucial for effective disaster management. Knowledge about population locations can greatly enhance rescue missions and evacuations. Realistic models that reflect observable mobility patterns and volumes are crucial for estimating population locations. However, existing models are limited in their applicability to disasters, as they are typically restricted to describing regular mobility patterns. Machine learning models trained to capture patterns observable in provided training data also face this limitation. The necessity of large amounts of training data for machine learning models, coupled with the scarcity of data on mobility in disasters, often constrains the feasibility of their training. Various strategies have been developed to overcome this issue, which we present and discuss in this systematic literature review. Our review aims to support and accelerate the synthesis of novel approaches by establishing a knowledge base for future research. This review identified a condensed field of related contributions exhibiting high methodology and context diversity. We classified and analyzed the relevant contributions based on their proposed approach and subsequently discussed and compared them qualitatively. Finally, we elaborated on general challenges and highlighted areas for future research.</div></div>","PeriodicalId":52341,"journal":{"name":"Progress in Disaster Science","volume":"25 ","pages":"Article 100405"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Disaster Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259006172500002X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding and predicting human mobility during disasters is crucial for effective disaster management. Knowledge about population locations can greatly enhance rescue missions and evacuations. Realistic models that reflect observable mobility patterns and volumes are crucial for estimating population locations. However, existing models are limited in their applicability to disasters, as they are typically restricted to describing regular mobility patterns. Machine learning models trained to capture patterns observable in provided training data also face this limitation. The necessity of large amounts of training data for machine learning models, coupled with the scarcity of data on mobility in disasters, often constrains the feasibility of their training. Various strategies have been developed to overcome this issue, which we present and discuss in this systematic literature review. Our review aims to support and accelerate the synthesis of novel approaches by establishing a knowledge base for future research. This review identified a condensed field of related contributions exhibiting high methodology and context diversity. We classified and analyzed the relevant contributions based on their proposed approach and subsequently discussed and compared them qualitatively. Finally, we elaborated on general challenges and highlighted areas for future research.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Disaster Science
Progress in Disaster Science Social Sciences-Safety Research
CiteScore
14.60
自引率
3.20%
发文量
51
审稿时长
12 weeks
期刊介绍: Progress in Disaster Science is a Gold Open Access journal focusing on integrating research and policy in disaster research, and publishes original research papers and invited viewpoint articles on disaster risk reduction; response; emergency management and recovery. A key part of the Journal's Publication output will see key experts invited to assess and comment on the current trends in disaster research, as well as highlight key papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信