Improving operational use of post-disaster damage assessment for Urban Search and Rescue by integrated graph-based multimodal remote sensing data analysis
Sivasakthy Selvakumaran , Iain Rolland , Luke Cullen , Rob Davis , Joshua Macabuag , Charbel Abou Chakra , Nanor Karageozian , Amir Gilani , Christian Geiβ , Miguel Bravo-Haro , Andrea Marinoni
{"title":"Improving operational use of post-disaster damage assessment for Urban Search and Rescue by integrated graph-based multimodal remote sensing data analysis","authors":"Sivasakthy Selvakumaran , Iain Rolland , Luke Cullen , Rob Davis , Joshua Macabuag , Charbel Abou Chakra , Nanor Karageozian , Amir Gilani , Christian Geiβ , Miguel Bravo-Haro , Andrea Marinoni","doi":"10.1016/j.pdisas.2025.100404","DOIUrl":null,"url":null,"abstract":"<div><div>This work investigates the application of remote sensing technologies within the specific operational context of emergency urban search and rescue (USAR) efforts post-disaster. We thoroughly investigate two innovative methodologies, each tailored to meet distinct operational goals in a USAR setting. The first employs a belief propagation framework that is designed to provide prompt and robust initial damage assessments using sparse data, with the capability to incorporate additional on-site information as it becomes available. The second methodology introduces a modified graph convolutional network to quantify the uncertainty levels inherent in damage classification tasks. Three case studies were considered, using damage assessment data from the 2020 Beirut explosion, the 2021 Haiti earthquake and the 2023 Türkiye-Syria earthquake. Our experimental results demonstrate the potential of these approaches to achieve operational objectives, particularly in terms of robustness and scalability in disaster scenarios. The versatility offered by graph-based methodologies establishes a solid foundation for addressing these dynamic challenges, suggesting a promising direction for continued research in this field.</div></div>","PeriodicalId":52341,"journal":{"name":"Progress in Disaster Science","volume":"25 ","pages":"Article 100404"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Disaster Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590061725000018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This work investigates the application of remote sensing technologies within the specific operational context of emergency urban search and rescue (USAR) efforts post-disaster. We thoroughly investigate two innovative methodologies, each tailored to meet distinct operational goals in a USAR setting. The first employs a belief propagation framework that is designed to provide prompt and robust initial damage assessments using sparse data, with the capability to incorporate additional on-site information as it becomes available. The second methodology introduces a modified graph convolutional network to quantify the uncertainty levels inherent in damage classification tasks. Three case studies were considered, using damage assessment data from the 2020 Beirut explosion, the 2021 Haiti earthquake and the 2023 Türkiye-Syria earthquake. Our experimental results demonstrate the potential of these approaches to achieve operational objectives, particularly in terms of robustness and scalability in disaster scenarios. The versatility offered by graph-based methodologies establishes a solid foundation for addressing these dynamic challenges, suggesting a promising direction for continued research in this field.
期刊介绍:
Progress in Disaster Science is a Gold Open Access journal focusing on integrating research and policy in disaster research, and publishes original research papers and invited viewpoint articles on disaster risk reduction; response; emergency management and recovery.
A key part of the Journal's Publication output will see key experts invited to assess and comment on the current trends in disaster research, as well as highlight key papers.