Structured physics-guided neural networks for electromagnetic commutation applied to industrial linear motors

IF 3.1 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Max Bolderman , Mircea Lazar , Hans Butler
{"title":"Structured physics-guided neural networks for electromagnetic commutation applied to industrial linear motors","authors":"Max Bolderman ,&nbsp;Mircea Lazar ,&nbsp;Hans Butler","doi":"10.1016/j.mechatronics.2024.103291","DOIUrl":null,"url":null,"abstract":"<div><div>Mechatronic systems are described by an interconnection of the electromagnetic part, i.e., a static position-dependent nonlinear relation between currents and forces, and the mechanical part, i.e., a dynamic relation from forces to position. Commutation inverts a model of the electromagnetic part of the system, and thereby removes the electromagnetic part from the position control problem. Typical commutation algorithms rely on simplified models derived from physics-based knowledge, which do not take into account position dependent parasitic effects. In turn, these commutation related model errors translate into position tracking errors, which limit the system performance. Therefore, in this work, we develop a data-driven approach to commutation using physics-guided neural networks (PGNNs). A novel PGNN model is proposed which structures neural networks (NNs) to learn specific motor dependent parasitic effects. The PGNN is used to identify a model of the electromagnetic part using force measurements, after which it is analytically inverted to obtain a PGNN-based commutation algorithm. Motivated by industrial applications, we develop an input transformation to deal with systems with fixed commutation, i.e., when the currents cannot be controlled. Real-life experiments on an industrial coreless linear motor (CLM) demonstrate a factor 10 improvement in the commutation error in driving direction and a factor 4 improvement in the position error with respect to classical commutation in terms of the mean-squared error (MSE).</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"106 ","pages":"Article 103291"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957415824001569","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Mechatronic systems are described by an interconnection of the electromagnetic part, i.e., a static position-dependent nonlinear relation between currents and forces, and the mechanical part, i.e., a dynamic relation from forces to position. Commutation inverts a model of the electromagnetic part of the system, and thereby removes the electromagnetic part from the position control problem. Typical commutation algorithms rely on simplified models derived from physics-based knowledge, which do not take into account position dependent parasitic effects. In turn, these commutation related model errors translate into position tracking errors, which limit the system performance. Therefore, in this work, we develop a data-driven approach to commutation using physics-guided neural networks (PGNNs). A novel PGNN model is proposed which structures neural networks (NNs) to learn specific motor dependent parasitic effects. The PGNN is used to identify a model of the electromagnetic part using force measurements, after which it is analytically inverted to obtain a PGNN-based commutation algorithm. Motivated by industrial applications, we develop an input transformation to deal with systems with fixed commutation, i.e., when the currents cannot be controlled. Real-life experiments on an industrial coreless linear motor (CLM) demonstrate a factor 10 improvement in the commutation error in driving direction and a factor 4 improvement in the position error with respect to classical commutation in terms of the mean-squared error (MSE).
用于工业直线电机电磁换向的结构物理导向神经网络
机电系统是由电磁部分(即电流和力之间的静态位置相关非线性关系)和机械部分(即力与位置的动态关系)的互连来描述的。换相对系统电磁部分的模型进行了反演,从而将电磁部分从位置控制问题中剔除。典型的换相算法依赖于基于物理知识的简化模型,这些模型没有考虑位置相关的寄生效应。反过来,这些与换相相关的模型误差转化为位置跟踪误差,从而限制了系统的性能。因此,在这项工作中,我们开发了一种使用物理引导神经网络(pgnn)的数据驱动的换相方法。提出了一种新的PGNN模型,构建神经网络来学习特定的运动依赖的寄生效应。利用PGNN对电磁部件模型进行力测量识别,然后对其进行解析反演,得到基于PGNN的换相算法。受工业应用的启发,我们开发了一种输入变换来处理具有固定换相的系统,即当电流无法控制时。在工业无芯直线电机(CLM)上的实际实验表明,与传统换相相比,在驱动方向上的换相误差提高了10倍,在均方误差(MSE)方面的位置误差提高了4倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechatronics
Mechatronics 工程技术-工程:电子与电气
CiteScore
5.90
自引率
9.10%
发文量
0
审稿时长
109 days
期刊介绍: Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信