Adsorption and desorption of phenanthrene and 1-hydroxyphenanthrene by goethite-coated polyvinyl chloride

IF 5.9 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Zhiyu Zhang , Shuyue Liu , Dehua Zeng , Jingyi Gu , Tingting Cai , Ketong Chen , Hong Zhou , Zhi Dang , Chen Yang
{"title":"Adsorption and desorption of phenanthrene and 1-hydroxyphenanthrene by goethite-coated polyvinyl chloride","authors":"Zhiyu Zhang ,&nbsp;Shuyue Liu ,&nbsp;Dehua Zeng ,&nbsp;Jingyi Gu ,&nbsp;Tingting Cai ,&nbsp;Ketong Chen ,&nbsp;Hong Zhou ,&nbsp;Zhi Dang ,&nbsp;Chen Yang","doi":"10.1016/j.jes.2024.09.020","DOIUrl":null,"url":null,"abstract":"<div><div>Microplastics loaded with phenanthrene and derivatives are widely detected in aquatic environments, and the coating of natural minerals or organic macromolecules may change the environmental behavior of microplastics. In this study, three kinds of composites with different coverage were prepared by coating goethite on the surface of polyvinyl chloride microplastics to investigate the adsorption and desorption behavior of phenanthrene (PHE) and 1-hydroxyphenanthrene (1-OHPHE), and the effect of mucin on desorption was investigated. The results showed that goethite promoted the adsorption of PHE and 1-OHPHE by increasing the specific surface area of the composites. With the increase of the cover degree, the adsorption of PHE decreased because of the decrease in hydrophobicity; while the adsorption of 1-OHPHE initially increased and then decreased with the contributions of hydrophobic interaction and hydrogen bond. The adsorption of 1-OHPHE could be influenced by the pH and ionic strength primarily through electrostatic interactions and Ca<sup>2+</sup> bridging. The goethite significantly increased the desorption hysteresis for two chemicals due to the complicated pore structures and increased adsorption affinity. Mucin promoted the desorption of PHE through competitive adsorption, and inhibit the desorption of 1-OHPHE through hydrophobic interaction, hydrogen bonding and Ca<sup>2+</sup> bridging. This study elucidated the effects of natural minerals on the adsorption and desorption behavior of organic pollutants on microplastics, briefly discussed the effects of organic macromolecules on the desorption behavior of pollutants with different properties, and emphasized the different environmental behaviors of pollutants.</div></div>","PeriodicalId":15788,"journal":{"name":"Journal of Environmental Sciences-china","volume":"154 ","pages":"Pages 833-846"},"PeriodicalIF":5.9000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Sciences-china","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001074224004753","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Microplastics loaded with phenanthrene and derivatives are widely detected in aquatic environments, and the coating of natural minerals or organic macromolecules may change the environmental behavior of microplastics. In this study, three kinds of composites with different coverage were prepared by coating goethite on the surface of polyvinyl chloride microplastics to investigate the adsorption and desorption behavior of phenanthrene (PHE) and 1-hydroxyphenanthrene (1-OHPHE), and the effect of mucin on desorption was investigated. The results showed that goethite promoted the adsorption of PHE and 1-OHPHE by increasing the specific surface area of the composites. With the increase of the cover degree, the adsorption of PHE decreased because of the decrease in hydrophobicity; while the adsorption of 1-OHPHE initially increased and then decreased with the contributions of hydrophobic interaction and hydrogen bond. The adsorption of 1-OHPHE could be influenced by the pH and ionic strength primarily through electrostatic interactions and Ca2+ bridging. The goethite significantly increased the desorption hysteresis for two chemicals due to the complicated pore structures and increased adsorption affinity. Mucin promoted the desorption of PHE through competitive adsorption, and inhibit the desorption of 1-OHPHE through hydrophobic interaction, hydrogen bonding and Ca2+ bridging. This study elucidated the effects of natural minerals on the adsorption and desorption behavior of organic pollutants on microplastics, briefly discussed the effects of organic macromolecules on the desorption behavior of pollutants with different properties, and emphasized the different environmental behaviors of pollutants.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Environmental Sciences-china
Journal of Environmental Sciences-china 环境科学-环境科学
CiteScore
13.70
自引率
0.00%
发文量
6354
审稿时长
2.6 months
期刊介绍: The Journal of Environmental Sciences is an international journal started in 1989. The journal is devoted to publish original, peer-reviewed research papers on main aspects of environmental sciences, such as environmental chemistry, environmental biology, ecology, geosciences and environmental physics. Appropriate subjects include basic and applied research on atmospheric, terrestrial and aquatic environments, pollution control and abatement technology, conservation of natural resources, environmental health and toxicology. Announcements of international environmental science meetings and other recent information are also included.
文献相关原料
公司名称
产品信息
麦克林
methanol
阿拉丁
NaN3
阿拉丁
Mucin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信