{"title":"On the vanishing of the hyperdeterminant under certain symmetry conditions","authors":"Enrique Arrondo , Alicia Tocino","doi":"10.1016/j.jalgebra.2024.11.018","DOIUrl":null,"url":null,"abstract":"<div><div>Given a vector space <em>V</em> over a field <span><math><mi>K</mi></math></span> whose characteristic is coprime with <em>d</em>!, let us decompose the vector space of multilinear forms <span><math><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>⊗</mo><mover><mo>…</mo><mrow><mtext>(</mtext><mi>d</mi><mo>)</mo></mrow></mover><mo>⊗</mo><msup><mrow><mi>V</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>=</mo><msub><mrow><mo>⨁</mo></mrow><mrow><mi>λ</mi></mrow></msub><msub><mrow><mi>W</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>,</mo><mi>K</mi><mo>)</mo></math></span> according to the different partitions <em>λ</em> of <em>d</em>, i.e. the different representations of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span>. In this paper we first give a decomposition <span><math><msub><mrow><mi>W</mi></mrow><mrow><mo>(</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></msub><mo>(</mo><mi>V</mi><mo>,</mo><mi>K</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>⨁</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msubsup><msubsup><mrow><mi>W</mi></mrow><mrow><mo>(</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>i</mi></mrow></msubsup><mo>(</mo><mi>V</mi><mo>,</mo><mi>K</mi><mo>)</mo></math></span>. We finally prove the vanishing of the hyperdeterminant of any <span><math><mi>F</mi><mo>∈</mo><mo>(</mo><msub><mrow><mo>⨁</mo></mrow><mrow><mi>λ</mi><mo>≠</mo><mo>(</mo><mi>d</mi><mo>)</mo><mo>,</mo><mo>(</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></msub><mo>)</mo><mo>⊕</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mo>(</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>i</mi></mrow></msubsup><mo>(</mo><mi>V</mi><mo>,</mo><mi>K</mi><mo>)</mo></math></span>. This improves the result in <span><span>[10]</span></span> and <span><span>[1]</span></span>, where the same result was proved without this new last summand.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"666 ","pages":"Pages 269-278"},"PeriodicalIF":0.8000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324006422","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Given a vector space V over a field whose characteristic is coprime with d!, let us decompose the vector space of multilinear forms according to the different partitions λ of d, i.e. the different representations of . In this paper we first give a decomposition . We finally prove the vanishing of the hyperdeterminant of any . This improves the result in [10] and [1], where the same result was proved without this new last summand.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.