A categorical interpretation of Morita equivalence for dynamical von Neumann algebras

IF 0.8 2区 数学 Q2 MATHEMATICS
Joeri De Ro
{"title":"A categorical interpretation of Morita equivalence for dynamical von Neumann algebras","authors":"Joeri De Ro","doi":"10.1016/j.jalgebra.2024.12.008","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a locally compact quantum group and <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>α</mi><mo>)</mo></math></span> a <span><math><mi>G</mi></math></span>-<span><math><msup><mrow><mi>W</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebra. The object of study of this paper is the <span><math><msup><mrow><mi>W</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-category <span><math><msup><mrow><mi>Rep</mi></mrow><mrow><mi>G</mi></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo></math></span> of normal, unital <span><math><mi>G</mi></math></span>-representations of <em>M</em> on Hilbert spaces endowed with a unitary <span><math><mi>G</mi></math></span>-representation. This category has a right action of the category <span><math><mi>Rep</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>Rep</mi></mrow><mrow><mi>G</mi></mrow></msup><mo>(</mo><mi>C</mi><mo>)</mo></math></span> for which it becomes a right <span><math><mi>Rep</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>-module <span><math><msup><mrow><mi>W</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-category. Given another <span><math><mi>G</mi></math></span>-<span><math><msup><mrow><mi>W</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebra <span><math><mo>(</mo><mi>N</mi><mo>,</mo><mi>β</mi><mo>)</mo></math></span>, we denote the category of normal ⁎-functors <span><math><msup><mrow><mi>Rep</mi></mrow><mrow><mi>G</mi></mrow></msup><mo>(</mo><mi>N</mi><mo>)</mo><mo>→</mo><msup><mrow><mi>Rep</mi></mrow><mrow><mi>G</mi></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo></math></span> compatible with the <span><math><mi>Rep</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>-module structure by <span><math><msub><mrow><mi>Fun</mi></mrow><mrow><mi>Rep</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mo>(</mo><msup><mrow><mi>Rep</mi></mrow><mrow><mi>G</mi></mrow></msup><mo>(</mo><mi>N</mi><mo>)</mo><mo>,</mo><msup><mrow><mi>Rep</mi></mrow><mrow><mi>G</mi></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo><mo>)</mo></math></span> and we denote the category of <span><math><mi>G</mi></math></span>-<em>M</em>-<em>N</em>-correspondences, studied in <span><span>[5]</span></span>, by <span><math><msup><mrow><mi>Corr</mi></mrow><mrow><mi>G</mi></mrow></msup><mo>(</mo><mi>M</mi><mo>,</mo><mi>N</mi><mo>)</mo></math></span>. We prove that there are canonical functors <span><math><mi>P</mi><mo>:</mo><msup><mrow><mi>Corr</mi></mrow><mrow><mi>G</mi></mrow></msup><mo>(</mo><mi>M</mi><mo>,</mo><mi>N</mi><mo>)</mo><mo>→</mo><msub><mrow><mi>Fun</mi></mrow><mrow><mi>Rep</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mo>(</mo><msup><mrow><mi>Rep</mi></mrow><mrow><mi>G</mi></mrow></msup><mo>(</mo><mi>N</mi><mo>)</mo><mo>,</mo><msup><mrow><mi>Rep</mi></mrow><mrow><mi>G</mi></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo><mo>)</mo></math></span> and <span><math><mi>Q</mi><mo>:</mo><msub><mrow><mi>Fun</mi></mrow><mrow><mi>Rep</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mo>(</mo><msup><mrow><mi>Rep</mi></mrow><mrow><mi>G</mi></mrow></msup><mo>(</mo><mi>N</mi><mo>)</mo><mo>,</mo><msup><mrow><mi>Rep</mi></mrow><mrow><mi>G</mi></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo><mo>)</mo><mo>→</mo><msup><mrow><mi>Corr</mi></mrow><mrow><mi>G</mi></mrow></msup><mo>(</mo><mi>M</mi><mo>,</mo><mi>N</mi><mo>)</mo></math></span> such that <span><math><mi>Q</mi><mo>∘</mo><mi>P</mi><mo>≅</mo><mi>id</mi></math></span>. We use these functors to show that the <span><math><mi>G</mi></math></span>-dynamical von Neumann algebras <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>α</mi><mo>)</mo></math></span> and <span><math><mo>(</mo><mi>N</mi><mo>,</mo><mi>β</mi><mo>)</mo></math></span> are equivariantly Morita equivalent if and only if <span><math><msup><mrow><mi>Rep</mi></mrow><mrow><mi>G</mi></mrow></msup><mo>(</mo><mi>N</mi><mo>)</mo></math></span> and <span><math><msup><mrow><mi>Rep</mi></mrow><mrow><mi>G</mi></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo></math></span> are equivalent as <span><math><mi>Rep</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>-module-<span><math><msup><mrow><mi>W</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-categories. Specializing to the case where <span><math><mi>G</mi></math></span> is a compact quantum group, we prove that moreover <span><math><mi>P</mi><mo>∘</mo><mi>Q</mi><mo>≅</mo><mi>id</mi></math></span>, so that the categories <span><math><msup><mrow><mi>Corr</mi></mrow><mrow><mi>G</mi></mrow></msup><mo>(</mo><mi>M</mi><mo>,</mo><mi>N</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>Fun</mi></mrow><mrow><mi>Rep</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mo>(</mo><msup><mrow><mi>Rep</mi></mrow><mrow><mi>G</mi></mrow></msup><mo>(</mo><mi>N</mi><mo>)</mo><mo>,</mo><msup><mrow><mi>Rep</mi></mrow><mrow><mi>G</mi></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo><mo>)</mo></math></span> are equivalent. This is an equivariant version of the Eilenberg-Watts theorem for actions of compact quantum groups on von Neumann algebras.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"666 ","pages":"Pages 673-702"},"PeriodicalIF":0.8000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324006744","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a locally compact quantum group and (M,α) a G-W-algebra. The object of study of this paper is the W-category RepG(M) of normal, unital G-representations of M on Hilbert spaces endowed with a unitary G-representation. This category has a right action of the category Rep(G)=RepG(C) for which it becomes a right Rep(G)-module W-category. Given another G-W-algebra (N,β), we denote the category of normal ⁎-functors RepG(N)RepG(M) compatible with the Rep(G)-module structure by FunRep(G)(RepG(N),RepG(M)) and we denote the category of G-M-N-correspondences, studied in [5], by CorrG(M,N). We prove that there are canonical functors P:CorrG(M,N)FunRep(G)(RepG(N),RepG(M)) and Q:FunRep(G)(RepG(N),RepG(M))CorrG(M,N) such that QPid. We use these functors to show that the G-dynamical von Neumann algebras (M,α) and (N,β) are equivariantly Morita equivalent if and only if RepG(N) and RepG(M) are equivalent as Rep(G)-module-W-categories. Specializing to the case where G is a compact quantum group, we prove that moreover PQid, so that the categories CorrG(M,N) and FunRep(G)(RepG(N),RepG(M)) are equivalent. This is an equivariant version of the Eilenberg-Watts theorem for actions of compact quantum groups on von Neumann algebras.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信