Norm one tori and Hasse norm principle, III: Degree 16 case

IF 0.8 2区 数学 Q2 MATHEMATICS
Akinari Hoshi , Kazuki Kanai , Aiichi Yamasaki
{"title":"Norm one tori and Hasse norm principle, III: Degree 16 case","authors":"Akinari Hoshi ,&nbsp;Kazuki Kanai ,&nbsp;Aiichi Yamasaki","doi":"10.1016/j.jalgebra.2024.10.053","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>k</em> be a field, <em>T</em> be an algebraic <em>k</em>-torus, <em>X</em> be a smooth <em>k</em>-compactification of <em>T</em> and <span><math><mrow><mi>Pic</mi></mrow><mspace></mspace><mover><mrow><mi>X</mi></mrow><mo>‾</mo></mover></math></span> be the Picard group of <span><math><mover><mrow><mi>X</mi></mrow><mo>‾</mo></mover><mo>=</mo><mi>X</mi><msub><mrow><mo>×</mo></mrow><mrow><mi>k</mi></mrow></msub><mover><mrow><mi>k</mi></mrow><mo>‾</mo></mover></math></span> where <span><math><mover><mrow><mi>k</mi></mrow><mo>‾</mo></mover></math></span> is a fixed separable closure of <em>k</em>. Hoshi, Kanai and Yamasaki <span><span>[30]</span></span>, <span><span>[31]</span></span> determined <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>k</mi><mo>,</mo><mrow><mi>Pic</mi></mrow><mspace></mspace><mover><mrow><mi>X</mi></mrow><mo>‾</mo></mover><mo>)</mo></math></span> for norm one tori <span><math><mi>T</mi><mo>=</mo><msubsup><mrow><mi>R</mi></mrow><mrow><mi>K</mi><mo>/</mo><mi>k</mi></mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msubsup><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></math></span> and gave a necessary and sufficient condition for the Hasse norm principle for extensions <span><math><mi>K</mi><mo>/</mo><mi>k</mi></math></span> of number fields with <span><math><mo>[</mo><mi>K</mi><mo>:</mo><mi>k</mi><mo>]</mo><mo>≤</mo><mn>15</mn></math></span>. In this paper, we treat the case where <span><math><mo>[</mo><mi>K</mi><mo>:</mo><mi>k</mi><mo>]</mo><mo>=</mo><mn>16</mn></math></span>. Among 1954 transitive subgroups <span><math><mi>G</mi><mo>=</mo><mn>16</mn><mi>T</mi><mi>m</mi><mo>≤</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>16</mn></mrow></msub></math></span> <span><math><mo>(</mo><mn>1</mn><mo>≤</mo><mi>m</mi><mo>≤</mo><mn>1954</mn><mo>)</mo></math></span> up to conjugacy, we determine 1101 (resp. 774, 31, 37, 1, 1, 9) cases with <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>k</mi><mo>,</mo><mrow><mi>Pic</mi></mrow><mspace></mspace><mover><mrow><mi>X</mi></mrow><mo>‾</mo></mover><mo>)</mo><mo>=</mo><mn>0</mn></math></span> (resp. <span><math><mi>Z</mi><mo>/</mo><mn>2</mn><mi>Z</mi></math></span>, <span><math><msup><mrow><mo>(</mo><mi>Z</mi><mo>/</mo><mn>2</mn><mi>Z</mi><mo>)</mo></mrow><mrow><mo>⊕</mo><mn>2</mn></mrow></msup></math></span>, <span><math><msup><mrow><mo>(</mo><mi>Z</mi><mo>/</mo><mn>2</mn><mi>Z</mi><mo>)</mo></mrow><mrow><mo>⊕</mo><mn>3</mn></mrow></msup></math></span>, <span><math><msup><mrow><mo>(</mo><mi>Z</mi><mo>/</mo><mn>2</mn><mi>Z</mi><mo>)</mo></mrow><mrow><mo>⊕</mo><mn>4</mn></mrow></msup></math></span>, <span><math><msup><mrow><mo>(</mo><mi>Z</mi><mo>/</mo><mn>2</mn><mi>Z</mi><mo>)</mo></mrow><mrow><mo>⊕</mo><mn>6</mn></mrow></msup></math></span>, <span><math><mi>Z</mi><mo>/</mo><mn>4</mn><mi>Z</mi></math></span>) where <em>G</em> is the Galois group of the Galois closure <span><math><mi>L</mi><mo>/</mo><mi>k</mi></math></span> of <span><math><mi>K</mi><mo>/</mo><mi>k</mi></math></span>. We see that <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>k</mi><mo>,</mo><mrow><mi>Pic</mi></mrow><mspace></mspace><mover><mrow><mi>X</mi></mrow><mo>‾</mo></mover><mo>)</mo><mo>=</mo><mn>0</mn></math></span> implies that the Hasse norm principle holds for <span><math><mi>K</mi><mo>/</mo><mi>k</mi></math></span>. In particular, among 22 primitive <span><math><mi>G</mi><mo>=</mo><mn>16</mn><mi>T</mi><mi>m</mi></math></span> cases, i.e. <span><math><mi>H</mi><mo>≤</mo><mi>G</mi><mo>=</mo><mn>16</mn><mi>T</mi><mi>m</mi></math></span> is maximal with <span><math><mo>[</mo><mi>G</mi><mo>:</mo><mi>H</mi><mo>]</mo><mo>=</mo><mn>16</mn></math></span>, we determine exactly 6 cases <span><math><mo>(</mo><mi>m</mi><mo>=</mo><mn>178</mn><mo>,</mo><mn>708</mn><mo>,</mo><mn>1080</mn><mo>,</mo><mn>1329</mn><mo>,</mo><mn>1654</mn><mo>,</mo><mn>1753</mn><mo>)</mo></math></span> with <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>k</mi><mo>,</mo><mrow><mi>Pic</mi></mrow><mspace></mspace><mover><mrow><mi>X</mi></mrow><mo>‾</mo></mover><mo>)</mo><mo>≠</mo><mn>0</mn></math></span> (<span><math><msup><mrow><mo>(</mo><mi>Z</mi><mo>/</mo><mn>2</mn><mi>Z</mi><mo>)</mo></mrow><mrow><mo>⊕</mo><mn>2</mn></mrow></msup></math></span>, <span><math><mi>Z</mi><mo>/</mo><mn>2</mn><mi>Z</mi></math></span>, <span><math><msup><mrow><mo>(</mo><mi>Z</mi><mo>/</mo><mn>2</mn><mi>Z</mi><mo>)</mo></mrow><mrow><mo>⊕</mo><mn>2</mn></mrow></msup></math></span>, <span><math><mi>Z</mi><mo>/</mo><mn>2</mn><mi>Z</mi></math></span>, <span><math><mi>Z</mi><mo>/</mo><mn>2</mn><mi>Z</mi></math></span>, <span><math><mi>Z</mi><mo>/</mo><mn>2</mn><mi>Z</mi></math></span>). Moreover, we give a necessary and sufficient condition for the Hasse norm principle for <span><math><mi>K</mi><mo>/</mo><mi>k</mi></math></span> with <span><math><mo>[</mo><mi>K</mi><mo>:</mo><mi>k</mi><mo>]</mo><mo>=</mo><mn>16</mn></math></span> for 22 primitive <span><math><mi>G</mi><mo>=</mo><mn>16</mn><mi>T</mi><mi>m</mi></math></span> cases. As a consequence of the 22 primitive <em>G</em> cases, we get the Tamagawa number <span><math><mi>τ</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span>, 1/2, 1/4 of <span><math><mi>T</mi><mo>=</mo><msubsup><mrow><mi>R</mi></mrow><mrow><mi>K</mi><mo>/</mo><mi>k</mi></mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msubsup><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></math></span> over a number field <em>k</em> via Ono's formula <figure><img></figure> where <figure><img></figure> is the Shafarevich-Tate group of <em>T</em>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"666 ","pages":"Pages 794-820"},"PeriodicalIF":0.8000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324006495","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let k be a field, T be an algebraic k-torus, X be a smooth k-compactification of T and PicX be the Picard group of X=X×kk where k is a fixed separable closure of k. Hoshi, Kanai and Yamasaki [30], [31] determined H1(k,PicX) for norm one tori T=RK/k(1)(Gm) and gave a necessary and sufficient condition for the Hasse norm principle for extensions K/k of number fields with [K:k]15. In this paper, we treat the case where [K:k]=16. Among 1954 transitive subgroups G=16TmS16 (1m1954) up to conjugacy, we determine 1101 (resp. 774, 31, 37, 1, 1, 9) cases with H1(k,PicX)=0 (resp. Z/2Z, (Z/2Z)2, (Z/2Z)3, (Z/2Z)4, (Z/2Z)6, Z/4Z) where G is the Galois group of the Galois closure L/k of K/k. We see that H1(k,PicX)=0 implies that the Hasse norm principle holds for K/k. In particular, among 22 primitive G=16Tm cases, i.e. HG=16Tm is maximal with [G:H]=16, we determine exactly 6 cases (m=178,708,1080,1329,1654,1753) with H1(k,PicX)0 ((Z/2Z)2, Z/2Z, (Z/2Z)2, Z/2Z, Z/2Z, Z/2Z). Moreover, we give a necessary and sufficient condition for the Hasse norm principle for K/k with [K:k]=16 for 22 primitive G=16Tm cases. As a consequence of the 22 primitive G cases, we get the Tamagawa number τ(T)=1, 1/2, 1/4 of T=RK/k(1)(Gm) over a number field k via Ono's formula
where
is the Shafarevich-Tate group of T.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信