Compressive strength and microstructural development of cement paste incorporating nanosilica with different particle sizes

Pegah Farjad , Ahmed G. Mehairi , Fereshteh Meshkani , Roozbeh Mowlaei , Rahil Khoshnazar , Nashaat N. Nassar
{"title":"Compressive strength and microstructural development of cement paste incorporating nanosilica with different particle sizes","authors":"Pegah Farjad ,&nbsp;Ahmed G. Mehairi ,&nbsp;Fereshteh Meshkani ,&nbsp;Roozbeh Mowlaei ,&nbsp;Rahil Khoshnazar ,&nbsp;Nashaat N. Nassar","doi":"10.1016/j.cement.2025.100128","DOIUrl":null,"url":null,"abstract":"<div><div>Nanosilica particles are among the most studied nanomaterials in cementitious mixtures. However, literature on the effect of nanosilica particle size on the performance of these mixtures is still limited, with sometimes inconsistent findings. This study aims to address this gap by including the synthesis and application of different-sized nanosilica particles in one study. A uniform synthesis method was used to achieve nanosilica with four distinct average particle sizes (10, 35, 65, and 90 nm), covering the whole nanoscale range. The nanosilica particles were then fully characterized and utilized in cement paste at 1, 2, and 3 wt% of the cement. The compressive strength, heat evolution, microstructure, and rheological behaviour of the resultant pastes were investigated. The results revealed that the smallest particle size of nanosilica (10 nm) provided the highest compressive strength enhancement (over 100 % enhancement when used at 2 wt% of cement). The high pozzolanic reactivity of such small nanosilica particles at 2 wt%, together with their acceleration effect on cement hydration and densification of the paste microstructure, all contributed to this strength improvement. Overall, the enhancing effects of the nanosilica particles on the compressive strength of the pastes were less substantial when their particle size increased from 10 to 90 nm at any given concentration. All the nanosilica particles also increased the viscosity of the paste. This increasing effect was higher for smaller-sized nanosilica particles and at higher concentrations.</div></div>","PeriodicalId":100225,"journal":{"name":"CEMENT","volume":"19 ","pages":"Article 100128"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEMENT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666549225000015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nanosilica particles are among the most studied nanomaterials in cementitious mixtures. However, literature on the effect of nanosilica particle size on the performance of these mixtures is still limited, with sometimes inconsistent findings. This study aims to address this gap by including the synthesis and application of different-sized nanosilica particles in one study. A uniform synthesis method was used to achieve nanosilica with four distinct average particle sizes (10, 35, 65, and 90 nm), covering the whole nanoscale range. The nanosilica particles were then fully characterized and utilized in cement paste at 1, 2, and 3 wt% of the cement. The compressive strength, heat evolution, microstructure, and rheological behaviour of the resultant pastes were investigated. The results revealed that the smallest particle size of nanosilica (10 nm) provided the highest compressive strength enhancement (over 100 % enhancement when used at 2 wt% of cement). The high pozzolanic reactivity of such small nanosilica particles at 2 wt%, together with their acceleration effect on cement hydration and densification of the paste microstructure, all contributed to this strength improvement. Overall, the enhancing effects of the nanosilica particles on the compressive strength of the pastes were less substantial when their particle size increased from 10 to 90 nm at any given concentration. All the nanosilica particles also increased the viscosity of the paste. This increasing effect was higher for smaller-sized nanosilica particles and at higher concentrations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信