Xuejie Ma , Zhihong Yu , Min Liu , Jingli Wang , Qiang Su , Jianchao Zhang , Jingjing Xie , Tao Wang
{"title":"Mechanical properties and critical state characteristics of maize root-soil composites at different soil depths","authors":"Xuejie Ma , Zhihong Yu , Min Liu , Jingli Wang , Qiang Su , Jianchao Zhang , Jingjing Xie , Tao Wang","doi":"10.1016/j.biosystemseng.2024.12.014","DOIUrl":null,"url":null,"abstract":"<div><div>The complex distribution characteristics of root-soil composites pose challenges in understanding their mechanical behaviour during conservation tillage. This study aims to analyse mechanical parameters of root-soil composites at different soil depths, considering root distribution, and establish an empirical critical state model. Three layers were defined based on root density distribution: Shallow Aggregated Root Zone (SARZ: 0–60 mm), Middle Enriched Root Zone (MERZ: 60–150 mm), and Deep Extended Root Zone (DERZ: 150–210 mm). Triaxial tests revealed varying shear strengths, with MERZ exhibiting the highest and SARZ the lowest. The Duncan-Chang model parameters, initial modulus of deformation, and initial Poisson's ratio were significantly influenced by soil depth, mirroring shear strength trends. An empirical formula incorporating soil layer depth into the Duncan-Chang model was proposed. Critical state stress ratios for SARZ and MERZ were determined as 0.93 and 1.11, respectively, quantifying their relationship with soil depth and root distribution. This study provides theoretical and parameter support for understanding the failure mechanism of root-soil composites.</div></div>","PeriodicalId":9173,"journal":{"name":"Biosystems Engineering","volume":"250 ","pages":"Pages 163-173"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1537511024002873","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The complex distribution characteristics of root-soil composites pose challenges in understanding their mechanical behaviour during conservation tillage. This study aims to analyse mechanical parameters of root-soil composites at different soil depths, considering root distribution, and establish an empirical critical state model. Three layers were defined based on root density distribution: Shallow Aggregated Root Zone (SARZ: 0–60 mm), Middle Enriched Root Zone (MERZ: 60–150 mm), and Deep Extended Root Zone (DERZ: 150–210 mm). Triaxial tests revealed varying shear strengths, with MERZ exhibiting the highest and SARZ the lowest. The Duncan-Chang model parameters, initial modulus of deformation, and initial Poisson's ratio were significantly influenced by soil depth, mirroring shear strength trends. An empirical formula incorporating soil layer depth into the Duncan-Chang model was proposed. Critical state stress ratios for SARZ and MERZ were determined as 0.93 and 1.11, respectively, quantifying their relationship with soil depth and root distribution. This study provides theoretical and parameter support for understanding the failure mechanism of root-soil composites.
期刊介绍:
Biosystems Engineering publishes research in engineering and the physical sciences that represent advances in understanding or modelling of the performance of biological systems for sustainable developments in land use and the environment, agriculture and amenity, bioproduction processes and the food chain. The subject matter of the journal reflects the wide range and interdisciplinary nature of research in engineering for biological systems.