An integrated modelling framework for optimization of the placement of grey-green-blue infrastructure to mitigate and adapt flood risk: An application to the Upper Ting River Watershed, China

IF 4.7 2区 地球科学 Q1 WATER RESOURCES
Jun Wu , Jiangang Xu , Muqiu Lu , Haolin Ming
{"title":"An integrated modelling framework for optimization of the placement of grey-green-blue infrastructure to mitigate and adapt flood risk: An application to the Upper Ting River Watershed, China","authors":"Jun Wu ,&nbsp;Jiangang Xu ,&nbsp;Muqiu Lu ,&nbsp;Haolin Ming","doi":"10.1016/j.ejrh.2024.102156","DOIUrl":null,"url":null,"abstract":"<div><h3>Study regions</h3><div>This study focuses on the Upper Ting River Watershed (UTRW) in the Ting River Basin, China.</div></div><div><h3>Study focus</h3><div>The study investigates the adverse impacts of urbanization and land-use change on hydrology, proposing the implementation of grey-green-blue infrastructure (GGBI) practices to mitigate these effects. An integrated modeling framework is developed to optimize the placement of GGBI, demonstrated through a case application in the UTRW.</div></div><div><h3>New hydrological insights for the region</h3><div>(1)The proposed modeling framework is highly effective in identifying key nodes and corridors for stormwater processes and flood inundation at both the watershed and city levels. It guides the reconstruction of GGBI spatial patterns at the watershed level and optimizes GGBI placement at the city level.</div><div>(2)In the central city, flooding covers an area of 8.44 km², or 18.53 % of the total area, with average flood depths of 0.99 m and maximum depths reaching 1.69 m. Areas most suitable for GGBI construction are located along the Ting River, showing clear continuity and concentration in the central city and Xinqiao Town.</div><div>(3)The optimized placement of GGBI, based on the SWMM model and non-dominated sorting genetic algorithm (NSGA-III), effectively reduces flood damage. Multi-objective optimization solutions outperform alternatives in terms of runoff reduction, pipeline overload duration, and construction costs.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"57 ","pages":"Article 102156"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology-Regional Studies","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214581824005056","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Study regions

This study focuses on the Upper Ting River Watershed (UTRW) in the Ting River Basin, China.

Study focus

The study investigates the adverse impacts of urbanization and land-use change on hydrology, proposing the implementation of grey-green-blue infrastructure (GGBI) practices to mitigate these effects. An integrated modeling framework is developed to optimize the placement of GGBI, demonstrated through a case application in the UTRW.

New hydrological insights for the region

(1)The proposed modeling framework is highly effective in identifying key nodes and corridors for stormwater processes and flood inundation at both the watershed and city levels. It guides the reconstruction of GGBI spatial patterns at the watershed level and optimizes GGBI placement at the city level.
(2)In the central city, flooding covers an area of 8.44 km², or 18.53 % of the total area, with average flood depths of 0.99 m and maximum depths reaching 1.69 m. Areas most suitable for GGBI construction are located along the Ting River, showing clear continuity and concentration in the central city and Xinqiao Town.
(3)The optimized placement of GGBI, based on the SWMM model and non-dominated sorting genetic algorithm (NSGA-III), effectively reduces flood damage. Multi-objective optimization solutions outperform alternatives in terms of runoff reduction, pipeline overload duration, and construction costs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hydrology-Regional Studies
Journal of Hydrology-Regional Studies Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
6.70
自引率
8.50%
发文量
284
审稿时长
60 days
期刊介绍: Journal of Hydrology: Regional Studies publishes original research papers enhancing the science of hydrology and aiming at region-specific problems, past and future conditions, analysis, review and solutions. The journal particularly welcomes research papers that deliver new insights into region-specific hydrological processes and responses to changing conditions, as well as contributions that incorporate interdisciplinarity and translational science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信