Zhuangzhuang Jia , Kaiqiang Jin , Wenxin Mei , Peng Qin , Jinhua Sun , Qingsong Wang
{"title":"Advances and perspectives in fire safety of lithium-ion battery energy storage systems","authors":"Zhuangzhuang Jia , Kaiqiang Jin , Wenxin Mei , Peng Qin , Jinhua Sun , Qingsong Wang","doi":"10.1016/j.etran.2024.100390","DOIUrl":null,"url":null,"abstract":"<div><div>With the advantages of high energy density, short response time and low economic cost, utility-scale lithium-ion battery energy storage systems are built and installed around the world. However, due to the thermal runaway characteristics of lithium-ion batteries, much more attention is attracted to the fire safety of battery energy storage systems. In this review, we comprehensively summarize recent advances in lithium iron phosphate (LFP) battery fire behavior and safety protection to solve the critical issues and develop safer LFP battery energy storage systems. Firstly, we overview the recent developments in thermal runaway mechanisms, gas venting behavior and fire behavior evolution at the battery, module, pack, and energy storage container levels. Afterward, the advanced thermal runaway warning and battery fire detection technologies are reviewed. Next, the multi-dimensional detection technologies that have applied in battery energy storage systems are discussed. Moreover, the general battery fire extinguishing agents and fire extinguishing methods are introduced. Finally, the recent development of fire protection strategies of LFP battery energy storage systems is summarized, and the future directions of firefighting technology are prospected.</div></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"24 ","pages":"Article 100390"},"PeriodicalIF":15.0000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Etransportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590116824000808","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
With the advantages of high energy density, short response time and low economic cost, utility-scale lithium-ion battery energy storage systems are built and installed around the world. However, due to the thermal runaway characteristics of lithium-ion batteries, much more attention is attracted to the fire safety of battery energy storage systems. In this review, we comprehensively summarize recent advances in lithium iron phosphate (LFP) battery fire behavior and safety protection to solve the critical issues and develop safer LFP battery energy storage systems. Firstly, we overview the recent developments in thermal runaway mechanisms, gas venting behavior and fire behavior evolution at the battery, module, pack, and energy storage container levels. Afterward, the advanced thermal runaway warning and battery fire detection technologies are reviewed. Next, the multi-dimensional detection technologies that have applied in battery energy storage systems are discussed. Moreover, the general battery fire extinguishing agents and fire extinguishing methods are introduced. Finally, the recent development of fire protection strategies of LFP battery energy storage systems is summarized, and the future directions of firefighting technology are prospected.
期刊介绍:
eTransportation is a scholarly journal that aims to advance knowledge in the field of electric transportation. It focuses on all modes of transportation that utilize electricity as their primary source of energy, including electric vehicles, trains, ships, and aircraft. The journal covers all stages of research, development, and testing of new technologies, systems, and devices related to electrical transportation.
The journal welcomes the use of simulation and analysis tools at the system, transport, or device level. Its primary emphasis is on the study of the electrical and electronic aspects of transportation systems. However, it also considers research on mechanical parts or subsystems of vehicles if there is a clear interaction with electrical or electronic equipment.
Please note that this journal excludes other aspects such as sociological, political, regulatory, or environmental factors from its scope.