Insight into the corrosion inhibition performance of triethylenetetramine (TETA) for AZ31 Mg alloy

IF 4.9 2区 化学 Q2 CHEMISTRY, PHYSICAL
Liyan Wang , Sifan Tu , Keqi Huang , Honglei Guo , Bing Lei , Zi Yang , Qiwen Yong , Zhiyuan Feng , Xiaotao Liu , Guozhe Meng
{"title":"Insight into the corrosion inhibition performance of triethylenetetramine (TETA) for AZ31 Mg alloy","authors":"Liyan Wang ,&nbsp;Sifan Tu ,&nbsp;Keqi Huang ,&nbsp;Honglei Guo ,&nbsp;Bing Lei ,&nbsp;Zi Yang ,&nbsp;Qiwen Yong ,&nbsp;Zhiyuan Feng ,&nbsp;Xiaotao Liu ,&nbsp;Guozhe Meng","doi":"10.1016/j.colsurfa.2025.136246","DOIUrl":null,"url":null,"abstract":"<div><div>As the lightest engineering material, Mg alloys have tremendous application prospects. However, due to their high reactivity, they are highly susceptible to corrosion. Traditional organic corrosion inhibitors have limited effectiveness in protecting Mg alloys, making it difficult to provide excellent protective performance. To address this, our project has discovered an extremely efficient corrosion inhibitor, Triethylenetetramine (TETA), and conducted in-depth research on its protective performance and mechanism. Corrosion electrochemical tests indicated that at a TETA concentration of 47 mM, the inhibition efficiency after 24 hours of immersion in 3.5 wt% NaCl was 98.8 %, and 99.7 % while switched to 0.1 M NaCl. SEM surface morphology analysis showed that the Mg alloy surface remained smooth with no significant corrosion features after adding TETA. XPS surface chemical analysis revealed that the protective TETA layer on the Mg alloy surface was formed due to the adsorption of polar groups. FT-IR technology further confirmed the successful adsorption of TETA. Experimental and theoretical calculations indicate that the corrosion protection mechanism of TETA is due to the spontaneous adsorption of TETA, which forms a dense protective film.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"710 ","pages":"Article 136246"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927775725001475","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

As the lightest engineering material, Mg alloys have tremendous application prospects. However, due to their high reactivity, they are highly susceptible to corrosion. Traditional organic corrosion inhibitors have limited effectiveness in protecting Mg alloys, making it difficult to provide excellent protective performance. To address this, our project has discovered an extremely efficient corrosion inhibitor, Triethylenetetramine (TETA), and conducted in-depth research on its protective performance and mechanism. Corrosion electrochemical tests indicated that at a TETA concentration of 47 mM, the inhibition efficiency after 24 hours of immersion in 3.5 wt% NaCl was 98.8 %, and 99.7 % while switched to 0.1 M NaCl. SEM surface morphology analysis showed that the Mg alloy surface remained smooth with no significant corrosion features after adding TETA. XPS surface chemical analysis revealed that the protective TETA layer on the Mg alloy surface was formed due to the adsorption of polar groups. FT-IR technology further confirmed the successful adsorption of TETA. Experimental and theoretical calculations indicate that the corrosion protection mechanism of TETA is due to the spontaneous adsorption of TETA, which forms a dense protective film.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
9.60%
发文量
2421
审稿时长
56 days
期刊介绍: Colloids and Surfaces A: Physicochemical and Engineering Aspects is an international journal devoted to the science underlying applications of colloids and interfacial phenomena. The journal aims at publishing high quality research papers featuring new materials or new insights into the role of colloid and interface science in (for example) food, energy, minerals processing, pharmaceuticals or the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信