Assessing the reliability of laboratory test procedures for predicting concrete field performance against alkali-aggregate reaction (AAR)

Ana Bergmann , Leandro F.M. Sanchez
{"title":"Assessing the reliability of laboratory test procedures for predicting concrete field performance against alkali-aggregate reaction (AAR)","authors":"Ana Bergmann ,&nbsp;Leandro F.M. Sanchez","doi":"10.1016/j.cement.2025.100133","DOIUrl":null,"url":null,"abstract":"<div><div>Alkali aggregate reaction (AAR) affected structures show reduced serviceability and premature distress in over 50 countries worldwide. Several laboratory test protocols have been proposed to evaluate the potential reactivity of aggregates by varying the conditions known to trigger and sustain the reaction. Among them, the most popular methods are the accelerated mortar bar test (AMBT) and the concrete prism test (CPT). Nevertheless, exposure site data, displaying the behaviour of concrete blocks exposed to real environmental conditions, has increased considerably recently, showing significant discrepancies between laboratory and concrete field performance. This study explores the reliability of laboratory tests, indicating moderate accuracy in predicting field performance for the AMBT and the CPT. The findings highlight an opportunity for recalibration of these methods through advanced analytical models that account for environmental conditions, alkali content, and the presence of SCMs to improve predictive accuracy. These measures will enhance concrete infrastructure safety by identifying risks associated with incorporating AAR-prone aggregates into new structures.</div></div>","PeriodicalId":100225,"journal":{"name":"CEMENT","volume":"19 ","pages":"Article 100133"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEMENT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666549225000064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Alkali aggregate reaction (AAR) affected structures show reduced serviceability and premature distress in over 50 countries worldwide. Several laboratory test protocols have been proposed to evaluate the potential reactivity of aggregates by varying the conditions known to trigger and sustain the reaction. Among them, the most popular methods are the accelerated mortar bar test (AMBT) and the concrete prism test (CPT). Nevertheless, exposure site data, displaying the behaviour of concrete blocks exposed to real environmental conditions, has increased considerably recently, showing significant discrepancies between laboratory and concrete field performance. This study explores the reliability of laboratory tests, indicating moderate accuracy in predicting field performance for the AMBT and the CPT. The findings highlight an opportunity for recalibration of these methods through advanced analytical models that account for environmental conditions, alkali content, and the presence of SCMs to improve predictive accuracy. These measures will enhance concrete infrastructure safety by identifying risks associated with incorporating AAR-prone aggregates into new structures.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信