Predicting sorption isotherms from thermodynamic calculations

Keshav Bharadwaj , O. Burkan Isgor , W. Jason Weiss
{"title":"Predicting sorption isotherms from thermodynamic calculations","authors":"Keshav Bharadwaj ,&nbsp;O. Burkan Isgor ,&nbsp;W. Jason Weiss","doi":"10.1016/j.cement.2025.100131","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate sorption/desorption isotherms for cementitious materials are important in predicting drying shrinkage, moisture transport, ionic transport, freezable water content, and the service life of concrete. This paper develops a framework for constructing water sorption isotherms for hydrated cementitious pastes from the outputs of thermodynamic modeling and a pore partitioning model (PPM). Thermodynamic modeling helps quantify the solid phases and pore space in the hydrated matrix. The PPM provides the volume of evaporable water in crystalline hydrates, the total volume of gel water, the volume of capillary water, and volume of pores due to chemical shrinkage. The sorption isotherm is constructed from information on the evaporable water present in individual phases at each RH, water adsorbed on C-S-H, water in pores with kelvin radius of 2–5 nm, capillary water, and water in pores due to chemical shrinkage and air voids. The Brunauer-Skalny-Bodor (BSB) model is used to calculate the water adsorbed on the C-S-H. This model predicts the sorption isotherms from the literature to within an error of 2–19 %. The areas for future work and the challenges in predicting the desorption isotherms are discussed.</div></div>","PeriodicalId":100225,"journal":{"name":"CEMENT","volume":"19 ","pages":"Article 100131"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEMENT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666549225000040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate sorption/desorption isotherms for cementitious materials are important in predicting drying shrinkage, moisture transport, ionic transport, freezable water content, and the service life of concrete. This paper develops a framework for constructing water sorption isotherms for hydrated cementitious pastes from the outputs of thermodynamic modeling and a pore partitioning model (PPM). Thermodynamic modeling helps quantify the solid phases and pore space in the hydrated matrix. The PPM provides the volume of evaporable water in crystalline hydrates, the total volume of gel water, the volume of capillary water, and volume of pores due to chemical shrinkage. The sorption isotherm is constructed from information on the evaporable water present in individual phases at each RH, water adsorbed on C-S-H, water in pores with kelvin radius of 2–5 nm, capillary water, and water in pores due to chemical shrinkage and air voids. The Brunauer-Skalny-Bodor (BSB) model is used to calculate the water adsorbed on the C-S-H. This model predicts the sorption isotherms from the literature to within an error of 2–19 %. The areas for future work and the challenges in predicting the desorption isotherms are discussed.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信