Chemical transformations during the preparation and rehydration of reactivated virgin cements

Neshable Noel, Tommy Mielke, Gustave Semugaza, Anne Zora Gierth, Susanne Helmich, Stefan Nawrath, Doru C. Lupascu
{"title":"Chemical transformations during the preparation and rehydration of reactivated virgin cements","authors":"Neshable Noel,&nbsp;Tommy Mielke,&nbsp;Gustave Semugaza,&nbsp;Anne Zora Gierth,&nbsp;Susanne Helmich,&nbsp;Stefan Nawrath,&nbsp;Doru C. Lupascu","doi":"10.1016/j.cement.2025.100129","DOIUrl":null,"url":null,"abstract":"<div><div>This paper aims to provide a thorough comprehension of the chemical transformations occurring during the thermal preparation of reactivated virgin cements (RVCes). X-ray Diffraction (XRD) analysis of RVCes reveals the reformation of the di-calcium mineral phases in two polymorphic forms: α<sup>/</sup><sub>L</sub>-C<sub>2</sub>S and β-C<sub>2</sub>S, within the temperature range from 600 °C to 850 °C. We exactly quantify the two polymorphs α<sup>/</sup><sub>L</sub>-C<sub>2</sub>S and α<sup>/</sup><sub>H</sub>-C<sub>2</sub>S and distinguish their presence in the reactivation temperature range. This phase formation is corroborated by scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDX). We further investigated the chemical changes that, after re-activation, take place during the 28-day rehydration period using differential scanning calorimetry (DSC), thermogravimetry (TG), XRD, and SEM, confirming the reformation of the typical hydration mineral phases. Mercury intrusion porosimetry (MIP) and compressive strength tests verified the development of strength-enhancing mineral phases in RVCs, exhibiting a mechanical strength recovery ranging from 50 % to 75 % compared to industrially produced virgin cement (VCe).</div></div>","PeriodicalId":100225,"journal":{"name":"CEMENT","volume":"19 ","pages":"Article 100129"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEMENT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666549225000027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to provide a thorough comprehension of the chemical transformations occurring during the thermal preparation of reactivated virgin cements (RVCes). X-ray Diffraction (XRD) analysis of RVCes reveals the reformation of the di-calcium mineral phases in two polymorphic forms: α/L-C2S and β-C2S, within the temperature range from 600 °C to 850 °C. We exactly quantify the two polymorphs α/L-C2S and α/H-C2S and distinguish their presence in the reactivation temperature range. This phase formation is corroborated by scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDX). We further investigated the chemical changes that, after re-activation, take place during the 28-day rehydration period using differential scanning calorimetry (DSC), thermogravimetry (TG), XRD, and SEM, confirming the reformation of the typical hydration mineral phases. Mercury intrusion porosimetry (MIP) and compressive strength tests verified the development of strength-enhancing mineral phases in RVCs, exhibiting a mechanical strength recovery ranging from 50 % to 75 % compared to industrially produced virgin cement (VCe).
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信