Predicting financial fraud in Chinese listed companies: An enterprise portrait and machine learning approach

IF 4.8 2区 经济学 Q1 BUSINESS, FINANCE
Zejun Zhang, Zhao Wang, Lixin Cai
{"title":"Predicting financial fraud in Chinese listed companies: An enterprise portrait and machine learning approach","authors":"Zejun Zhang,&nbsp;Zhao Wang,&nbsp;Lixin Cai","doi":"10.1016/j.pacfin.2025.102665","DOIUrl":null,"url":null,"abstract":"<div><div>Financial fraud of listed companies is a frequent problem in the capital market. Due to factors such as information asymmetry and inadequate regulation, financial fraud severely restricts stakeholders' capital allocation behavior and hinders the sustainable development of the capital market. However, existing research lacks systematic and quantitative insights into the characteristics of firms involved in financial fraud, making it difficult to achieve quantitative identification of most such firms. This limitation arises from a predominant focus on the causal relationships between various financial indicators and financial fraud. In this paper, we integrate machine learning and enterprise portrait methods, using listed companies in the Chinese capital market as research subjects to predict corporate financial fraud. Firstly, a comprehensive system of indicators is established, covering seven dimensions: basic corporate information, profitability, solvency, operating efficiency, capital structure, corporate governance, and emotional attitude. Subsequently, the feature visualization portrait is created using Gaussian mixture model (GMM) clustering and label classification, while the predictive role of multidimensional enterprise portrait features in assessing the risk of corporate financial fraud is examined. The results indicate that unstructured indicators, such as Management Discussion and Analysis (MD&amp;A), can significantly enhance predictive capability for corporate financial fraud. The SHapley Additive exPlanations (SHAP) method is introduced to reveal the influencing factors and characteristics of financial fraud. The empirical findings show that firms involved in financial fraud typically exhibit characteristics such as shorter listing times, weaker solvency and operating efficiency, higher capital structure, and poor corporate governance ability. Moreover, the XGBoost model demonstrates superior predictive performance among various models. The findings of this study provide a new perspective for in-depth exploration of the impact mechanisms of financial fraud and related regulatory warnings. These findings contribute to enhancing the effectiveness of governance and the capital allocation function within the capital market.</div></div>","PeriodicalId":48074,"journal":{"name":"Pacific-Basin Finance Journal","volume":"90 ","pages":"Article 102665"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific-Basin Finance Journal","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927538X25000022","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

Financial fraud of listed companies is a frequent problem in the capital market. Due to factors such as information asymmetry and inadequate regulation, financial fraud severely restricts stakeholders' capital allocation behavior and hinders the sustainable development of the capital market. However, existing research lacks systematic and quantitative insights into the characteristics of firms involved in financial fraud, making it difficult to achieve quantitative identification of most such firms. This limitation arises from a predominant focus on the causal relationships between various financial indicators and financial fraud. In this paper, we integrate machine learning and enterprise portrait methods, using listed companies in the Chinese capital market as research subjects to predict corporate financial fraud. Firstly, a comprehensive system of indicators is established, covering seven dimensions: basic corporate information, profitability, solvency, operating efficiency, capital structure, corporate governance, and emotional attitude. Subsequently, the feature visualization portrait is created using Gaussian mixture model (GMM) clustering and label classification, while the predictive role of multidimensional enterprise portrait features in assessing the risk of corporate financial fraud is examined. The results indicate that unstructured indicators, such as Management Discussion and Analysis (MD&A), can significantly enhance predictive capability for corporate financial fraud. The SHapley Additive exPlanations (SHAP) method is introduced to reveal the influencing factors and characteristics of financial fraud. The empirical findings show that firms involved in financial fraud typically exhibit characteristics such as shorter listing times, weaker solvency and operating efficiency, higher capital structure, and poor corporate governance ability. Moreover, the XGBoost model demonstrates superior predictive performance among various models. The findings of this study provide a new perspective for in-depth exploration of the impact mechanisms of financial fraud and related regulatory warnings. These findings contribute to enhancing the effectiveness of governance and the capital allocation function within the capital market.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pacific-Basin Finance Journal
Pacific-Basin Finance Journal BUSINESS, FINANCE-
CiteScore
6.80
自引率
6.50%
发文量
157
期刊介绍: The Pacific-Basin Finance Journal is aimed at providing a specialized forum for the publication of academic research on capital markets of the Asia-Pacific countries. Primary emphasis will be placed on the highest quality empirical and theoretical research in the following areas: • Market Micro-structure; • Investment and Portfolio Management; • Theories of Market Equilibrium; • Valuation of Financial and Real Assets; • Behavior of Asset Prices in Financial Sectors; • Normative Theory of Financial Management; • Capital Markets of Development; • Market Mechanisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信