Energy dissipation and fault dilation during intact-rock faulting

IF 2.6 2区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Ze'ev Reches , Nadav Wetzler
{"title":"Energy dissipation and fault dilation during intact-rock faulting","authors":"Ze'ev Reches ,&nbsp;Nadav Wetzler","doi":"10.1016/j.jsg.2024.105325","DOIUrl":null,"url":null,"abstract":"<div><div>Rock-failure is usually analyzed by using the stress-based Coulomb criterion with the empirical parameters of cohesion and internal friction. We recently developed an alternative rock failure theory that is based on two conditions: rocks fail under a critical elastic energy threshold, and the applied elastic strain is accommodated by shear and dilation along the faults. We refer to this theory as Critical Energy Fault Failure (CEFF) and demonstrated its applicability to a range of rock failure experimental configurations from uniaxial to polyaxial loadings (Reches and Wetzler, 2022). In the present analysis, we utilized the energy-based CEFF theory to highlight further aspects of rock faulting: A. Evaluation of the dissipated energy associated with rock faulting which revealed that intact rock failure dissipates 35–55% of the available elastic energy. B. For a given normal stress, the CEFF calculated shear strength of a developing fault is smaller than the equivalent of the Coulomb shear strength. C. The predicted dilation associated with faulting of intact brittle rocks that is calculated by CEFF is supported by experimental observations. These three analyzed subjects provide important contributions for the understanding of rock failure processes.</div></div>","PeriodicalId":50035,"journal":{"name":"Journal of Structural Geology","volume":"191 ","pages":"Article 105325"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0191814124002773","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Rock-failure is usually analyzed by using the stress-based Coulomb criterion with the empirical parameters of cohesion and internal friction. We recently developed an alternative rock failure theory that is based on two conditions: rocks fail under a critical elastic energy threshold, and the applied elastic strain is accommodated by shear and dilation along the faults. We refer to this theory as Critical Energy Fault Failure (CEFF) and demonstrated its applicability to a range of rock failure experimental configurations from uniaxial to polyaxial loadings (Reches and Wetzler, 2022). In the present analysis, we utilized the energy-based CEFF theory to highlight further aspects of rock faulting: A. Evaluation of the dissipated energy associated with rock faulting which revealed that intact rock failure dissipates 35–55% of the available elastic energy. B. For a given normal stress, the CEFF calculated shear strength of a developing fault is smaller than the equivalent of the Coulomb shear strength. C. The predicted dilation associated with faulting of intact brittle rocks that is calculated by CEFF is supported by experimental observations. These three analyzed subjects provide important contributions for the understanding of rock failure processes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Structural Geology
Journal of Structural Geology 地学-地球科学综合
CiteScore
6.00
自引率
19.40%
发文量
192
审稿时长
15.7 weeks
期刊介绍: The Journal of Structural Geology publishes process-oriented investigations about structural geology using appropriate combinations of analog and digital field data, seismic reflection data, satellite-derived data, geometric analysis, kinematic analysis, laboratory experiments, computer visualizations, and analogue or numerical modelling on all scales. Contributions are encouraged to draw perspectives from rheology, rock mechanics, geophysics,metamorphism, sedimentology, petroleum geology, economic geology, geodynamics, planetary geology, tectonics and neotectonics to provide a more powerful understanding of deformation processes and systems. Given the visual nature of the discipline, supplementary materials that portray the data and analysis in 3-D or quasi 3-D manners, including the use of videos, and/or graphical abstracts can significantly strengthen the impact of contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信