Automated toolpath design of 3D concrete printing structural components

IF 10.3 1区 工程技术 Q1 ENGINEERING, MANUFACTURING
Yefan Zhi , Hua Chai , Teng Teng , Masoud Akbarzadeh
{"title":"Automated toolpath design of 3D concrete printing structural components","authors":"Yefan Zhi ,&nbsp;Hua Chai ,&nbsp;Teng Teng ,&nbsp;Masoud Akbarzadeh","doi":"10.1016/j.addma.2025.104662","DOIUrl":null,"url":null,"abstract":"<div><div>3D concrete printing (3DCP) structural components for construction assemblies are known for reduced material use and enhanced efficiency and design freedom. This article investigates the limitations in the geometrical and toolpath design of 3DCP structural components and presents an automated and comprehensive approach to their toolpath design and optimization. It exploits hierarchical geometric data structures and graph algorithms to achieve the following features: (1) By analyzing the overhang of toolpaths, the method offers quantitative criteria for determining the buildability of the components and predicting failure, thus assisting design decisions. (2) It provides toolpath offsetting and filleting methods that can enhance the dimensional accuracy of the print concerning layer line textures and overfills. (3) For branching and porous geometries, the method creates as-continuous-as-possible toolpaths with minimal stop-starts based on their topologies, thus reducing seam defects. (4) It converts the toolpath into efficient visualization meshes representing layer line textures and toolpath meshes compatible with finite elements analysis. The proposed method is implemented as a plug-in software within the environment of Grasshopper® for Rhino® to facilitate designers and engineers working with 3DCP. The effectiveness and versatility of the tool are demonstrated through the toolpath design and printing of four sets of examples. The tool reduces the number of toolpaths by 90% for a typical 80 mm nozzle and takes 0.21 s per meter of toolpath to slice, analyze overhang, generate continuous printing toolpaths, and visualize the print.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"100 ","pages":"Article 104662"},"PeriodicalIF":10.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860425000260","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

3D concrete printing (3DCP) structural components for construction assemblies are known for reduced material use and enhanced efficiency and design freedom. This article investigates the limitations in the geometrical and toolpath design of 3DCP structural components and presents an automated and comprehensive approach to their toolpath design and optimization. It exploits hierarchical geometric data structures and graph algorithms to achieve the following features: (1) By analyzing the overhang of toolpaths, the method offers quantitative criteria for determining the buildability of the components and predicting failure, thus assisting design decisions. (2) It provides toolpath offsetting and filleting methods that can enhance the dimensional accuracy of the print concerning layer line textures and overfills. (3) For branching and porous geometries, the method creates as-continuous-as-possible toolpaths with minimal stop-starts based on their topologies, thus reducing seam defects. (4) It converts the toolpath into efficient visualization meshes representing layer line textures and toolpath meshes compatible with finite elements analysis. The proposed method is implemented as a plug-in software within the environment of Grasshopper® for Rhino® to facilitate designers and engineers working with 3DCP. The effectiveness and versatility of the tool are demonstrated through the toolpath design and printing of four sets of examples. The tool reduces the number of toolpaths by 90% for a typical 80 mm nozzle and takes 0.21 s per meter of toolpath to slice, analyze overhang, generate continuous printing toolpaths, and visualize the print.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Additive manufacturing
Additive manufacturing Materials Science-General Materials Science
CiteScore
19.80
自引率
12.70%
发文量
648
审稿时长
35 days
期刊介绍: Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects. The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信