Qiaoling Yu , Xueqian Hu , Yuan Qian , Yu Wang , Chenwei Shi , Rui Qi , Petr Heděnec , Zhibiao Nan , Huan Li
{"title":"Virus communities rather than bacterial communities contribute more on nutrient pool in polluted aquatic environment","authors":"Qiaoling Yu , Xueqian Hu , Yuan Qian , Yu Wang , Chenwei Shi , Rui Qi , Petr Heděnec , Zhibiao Nan , Huan Li","doi":"10.1016/j.jes.2024.08.026","DOIUrl":null,"url":null,"abstract":"<div><div>The degradation of animal carcasses can lead to rapid waste release (e.g., pathogenic bacteria, viruses, prions, or parasites) and also result in nutrient accumulation in the surrounding environment. However, how viral profile responds and influences nutrient pool (carbon (C), nitrogen (N), phosphorus (P) and sulfur (S)) in polluted water caused by animal carcass decomposition had not been explored. Here, we combined metagenomic analysis, 16S rRNA gene sequencing and water physicochemical assessment to explore the response of viral communities under different temperatures (23 °C, 26 °C, 29 °C, 32 °C, and 35 °C) in water polluted by cadaver, as well as compare the contribution of viral/bacterial communities on water nutrient pool. We found that a total of 15,240 viral species were classified and mainly consisted of Siphoviridae. Both temperature and carrion reduced the viral diversity and abundance. Only a small portion of the viruses (∼8.8 %) had significant negative correlations with temperature, while most were not sensitive. Our results revealed that the viruses had lager contribution on nutrient pool than bacteria. Besides, viral-related functional genes involved in C, N, P and S cycling. These functional genes declined during carcass decomposition and covered part of the central nutrient cycle metabolism (including carbon sugar transformation, denitrification, P mineralization and extracelluar sulfate transfer, etc.). Our result implies that human regulation of virus communities may be more important than bacterial communities in regulating and managing polluted water quality and nutrition</div></div>","PeriodicalId":15788,"journal":{"name":"Journal of Environmental Sciences-china","volume":"154 ","pages":"Pages 550-562"},"PeriodicalIF":5.9000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Sciences-china","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001074224004406","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The degradation of animal carcasses can lead to rapid waste release (e.g., pathogenic bacteria, viruses, prions, or parasites) and also result in nutrient accumulation in the surrounding environment. However, how viral profile responds and influences nutrient pool (carbon (C), nitrogen (N), phosphorus (P) and sulfur (S)) in polluted water caused by animal carcass decomposition had not been explored. Here, we combined metagenomic analysis, 16S rRNA gene sequencing and water physicochemical assessment to explore the response of viral communities under different temperatures (23 °C, 26 °C, 29 °C, 32 °C, and 35 °C) in water polluted by cadaver, as well as compare the contribution of viral/bacterial communities on water nutrient pool. We found that a total of 15,240 viral species were classified and mainly consisted of Siphoviridae. Both temperature and carrion reduced the viral diversity and abundance. Only a small portion of the viruses (∼8.8 %) had significant negative correlations with temperature, while most were not sensitive. Our results revealed that the viruses had lager contribution on nutrient pool than bacteria. Besides, viral-related functional genes involved in C, N, P and S cycling. These functional genes declined during carcass decomposition and covered part of the central nutrient cycle metabolism (including carbon sugar transformation, denitrification, P mineralization and extracelluar sulfate transfer, etc.). Our result implies that human regulation of virus communities may be more important than bacterial communities in regulating and managing polluted water quality and nutrition
期刊介绍:
The Journal of Environmental Sciences is an international journal started in 1989. The journal is devoted to publish original, peer-reviewed research papers on main aspects of environmental sciences, such as environmental chemistry, environmental biology, ecology, geosciences and environmental physics. Appropriate subjects include basic and applied research on atmospheric, terrestrial and aquatic environments, pollution control and abatement technology, conservation of natural resources, environmental health and toxicology. Announcements of international environmental science meetings and other recent information are also included.