Evaluating the importance of spatial variability of corrosion initiation parameters for the risk-based maintenance of reinforced concrete marine structures

IF 5.7 1区 工程技术 Q1 ENGINEERING, CIVIL
Romain Clerc , Charbel-Pierre El-Soueidy , Franck Schoefs
{"title":"Evaluating the importance of spatial variability of corrosion initiation parameters for the risk-based maintenance of reinforced concrete marine structures","authors":"Romain Clerc ,&nbsp;Charbel-Pierre El-Soueidy ,&nbsp;Franck Schoefs","doi":"10.1016/j.strusafe.2024.102568","DOIUrl":null,"url":null,"abstract":"<div><div>In Risk-Based Maintenance (RBM) of Reinforced Concrete (RC) marine structures, modeling the spatial variability of corrosion initiation parameters is crucial for ensuring durability. However, the necessity for an accurate characterization of this spatial variability has not yet been fully investigated, despite the potential increase in measurement costs. This study addresses this gap by focusing specifically on the failure probability at the Durability Limit-State (DLS) due to chloride-induced corrosion initiation. A robust Sensitivity Analysis (SA) methodology, combined with global quantitative All-At-Time (AAT) methods, is applied to a case study of a wharf beam. The objective is to identify the spatially variable degradation parameters whose fluctuation scales have at least the same impact on failure probability as other statistical hyperparameters (HP). The results highlight that key parameters – namely the correlation coefficient of diffusion parameters and the mean and standard deviation of total chloride apparent diffusivity – significantly impact failure probabilities, ranking as the first, second, and third most sensitive HP, respectively. Among fluctuation scales, only that of chloride diffusivity can affect failure probability, while others rank no higher than fifth in sensitivity. The findings demonstrate that a broad, pre-defined range for fluctuation scales (4%–20% of element dimensions) is sufficient for RBM, minimizing the need for costly updates over time. The study also reveals that incorporating aging and diffusion parameter correlations significantly changes both failure time and failure probabilities, increasing them up to 33% and 40 percentage points, respectively, in some scenarios.</div></div>","PeriodicalId":21978,"journal":{"name":"Structural Safety","volume":"114 ","pages":"Article 102568"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167473024001395","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

In Risk-Based Maintenance (RBM) of Reinforced Concrete (RC) marine structures, modeling the spatial variability of corrosion initiation parameters is crucial for ensuring durability. However, the necessity for an accurate characterization of this spatial variability has not yet been fully investigated, despite the potential increase in measurement costs. This study addresses this gap by focusing specifically on the failure probability at the Durability Limit-State (DLS) due to chloride-induced corrosion initiation. A robust Sensitivity Analysis (SA) methodology, combined with global quantitative All-At-Time (AAT) methods, is applied to a case study of a wharf beam. The objective is to identify the spatially variable degradation parameters whose fluctuation scales have at least the same impact on failure probability as other statistical hyperparameters (HP). The results highlight that key parameters – namely the correlation coefficient of diffusion parameters and the mean and standard deviation of total chloride apparent diffusivity – significantly impact failure probabilities, ranking as the first, second, and third most sensitive HP, respectively. Among fluctuation scales, only that of chloride diffusivity can affect failure probability, while others rank no higher than fifth in sensitivity. The findings demonstrate that a broad, pre-defined range for fluctuation scales (4%–20% of element dimensions) is sufficient for RBM, minimizing the need for costly updates over time. The study also reveals that incorporating aging and diffusion parameter correlations significantly changes both failure time and failure probabilities, increasing them up to 33% and 40 percentage points, respectively, in some scenarios.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Structural Safety
Structural Safety 工程技术-工程:土木
CiteScore
11.30
自引率
8.60%
发文量
67
审稿时长
53 days
期刊介绍: Structural Safety is an international journal devoted to integrated risk assessment for a wide range of constructed facilities such as buildings, bridges, earth structures, offshore facilities, dams, lifelines and nuclear structural systems. Its purpose is to foster communication about risk and reliability among technical disciplines involved in design and construction, and to enhance the use of risk management in the constructed environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信