{"title":"“Single-atom” catalysis: An opportunity for surface science","authors":"Gareth S. Parkinson","doi":"10.1016/j.susc.2024.122687","DOIUrl":null,"url":null,"abstract":"<div><div>Over the past decade, extensive research into ``single-atom'' catalysts (SACs) has revealed that the catalytic behavior of metal adatoms is highly dependent on how they interact with their support. A strong dependence on the local coordination environment has led to comparisons with metal-organic complexes, and there is growing excitement about the potential to fine-tune SACs by controlling the adsorption geometry. The rise of computational screening to identify the optimal support/metal combinations underscores the need for rigorous benchmarking of theoretical methods, to validate realistic geometries, mechanisms, and the impact of adsorption on stability and catalytic activity. The surface science approach is particularly well-suited for this task because it allows to precisely determine the geometry of the metal atom and interpret its catalytic behavior. Moreover, the effects of temperature and molecular adsorption on the model catalysts stability can be studied in isolation, and conclusions drawn from UHV studies tested in increasingly common near-ambient pressure and electrochemical setups. This perspective highlights recent breakthroughs and specific systems—including metal oxides, metal-organic frameworks, and carbon nitrides—where insights from surface science experiments can significantly advance understanding in this rapidly evolving field.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"754 ","pages":"Article 122687"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602824002383","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Over the past decade, extensive research into ``single-atom'' catalysts (SACs) has revealed that the catalytic behavior of metal adatoms is highly dependent on how they interact with their support. A strong dependence on the local coordination environment has led to comparisons with metal-organic complexes, and there is growing excitement about the potential to fine-tune SACs by controlling the adsorption geometry. The rise of computational screening to identify the optimal support/metal combinations underscores the need for rigorous benchmarking of theoretical methods, to validate realistic geometries, mechanisms, and the impact of adsorption on stability and catalytic activity. The surface science approach is particularly well-suited for this task because it allows to precisely determine the geometry of the metal atom and interpret its catalytic behavior. Moreover, the effects of temperature and molecular adsorption on the model catalysts stability can be studied in isolation, and conclusions drawn from UHV studies tested in increasingly common near-ambient pressure and electrochemical setups. This perspective highlights recent breakthroughs and specific systems—including metal oxides, metal-organic frameworks, and carbon nitrides—where insights from surface science experiments can significantly advance understanding in this rapidly evolving field.
期刊介绍:
Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:
• model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions
• nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena
• reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization
• phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization
• surface reactivity for environmental protection and pollution remediation
• interactions at surfaces of soft matter, including polymers and biomaterials.
Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.