A first-principles study of hydrazine adsorption and decomposition on Pt(111) surface: The effect of partially dissociative H2O on decomposition process

IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL
Yaolin Zhao , Dayin Tong , Zhongcun Chen , Songtao Xiao
{"title":"A first-principles study of hydrazine adsorption and decomposition on Pt(111) surface: The effect of partially dissociative H2O on decomposition process","authors":"Yaolin Zhao ,&nbsp;Dayin Tong ,&nbsp;Zhongcun Chen ,&nbsp;Songtao Xiao","doi":"10.1016/j.susc.2024.122680","DOIUrl":null,"url":null,"abstract":"<div><div>Density functional theory with dispersion correction (DFT-D3) is used to investigate the adsorption and decomposition of hydrazine (N<sub>2</sub>H<sub>4</sub>) on Pt(111) surface, and the effect of water on decomposition process is considered. The stable adsorption configurations and adsorption energies are obtained for hydrazine, water and intermediate species. The hydrazine decomposition is investigated in three kinds of pathways including intramolecular dehydrogenation and intermolecular dehydrogenation via H atom or OH group assistance. It is shown that the adsorption of water in partially dissociative conformation (H and OH radicals) is the most stable on Pt(111) surface for its largest adsorption energy. The OH group can greatly promote the decomposition of hydrazine by drastically decreasing the energy barriers of dehydrogenation reactions, which are closely related to the overall PDOS distribution shifts of their transition states. From thermodynamics and kinetics points of view, the favorable decomposition pathway of hydrazine may be N<sub>2</sub>H<sub>4</sub>+OH→N<sub>2</sub>H<sub>3</sub>+OH→NHNH+OH→NNH+OH→N<sub>2</sub>.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"754 ","pages":"Article 122680"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602824002310","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Density functional theory with dispersion correction (DFT-D3) is used to investigate the adsorption and decomposition of hydrazine (N2H4) on Pt(111) surface, and the effect of water on decomposition process is considered. The stable adsorption configurations and adsorption energies are obtained for hydrazine, water and intermediate species. The hydrazine decomposition is investigated in three kinds of pathways including intramolecular dehydrogenation and intermolecular dehydrogenation via H atom or OH group assistance. It is shown that the adsorption of water in partially dissociative conformation (H and OH radicals) is the most stable on Pt(111) surface for its largest adsorption energy. The OH group can greatly promote the decomposition of hydrazine by drastically decreasing the energy barriers of dehydrogenation reactions, which are closely related to the overall PDOS distribution shifts of their transition states. From thermodynamics and kinetics points of view, the favorable decomposition pathway of hydrazine may be N2H4+OH→N2H3+OH→NHNH+OH→NNH+OH→N2.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Surface Science
Surface Science 化学-物理:凝聚态物理
CiteScore
3.30
自引率
5.30%
发文量
137
审稿时长
25 days
期刊介绍: Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to: • model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions • nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena • reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization • phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization • surface reactivity for environmental protection and pollution remediation • interactions at surfaces of soft matter, including polymers and biomaterials. Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信