3D structural implicit modelling of folded metamorphic units at Lago di Cignana with uncertainty assessment

IF 2.6 2区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Gloria Arienti , Andrea Bistacchi , Guillaume Caumon , Bruno Monopoli , Giovanni Dal Piaz
{"title":"3D structural implicit modelling of folded metamorphic units at Lago di Cignana with uncertainty assessment","authors":"Gloria Arienti ,&nbsp;Andrea Bistacchi ,&nbsp;Guillaume Caumon ,&nbsp;Bruno Monopoli ,&nbsp;Giovanni Dal Piaz","doi":"10.1016/j.jsg.2024.105329","DOIUrl":null,"url":null,"abstract":"<div><div>We present a modelling workflow for the creation of a km-scale, three-dimensional representation of the tectonic architecture exposed in the Lago di Cignana region within the Italian Pennine Alps. The model portrays notable tectonic boundaries such as the Dent Blanche Basal Thrust, the Combin Fault and the Roisan-Cignana Shear Zone. Our approach employs the implicit Discrete Smooth Interpolator, which represents the tectonic sequence as a volumetric scalar field generalising a relative distance function. The interpolation process is constrained by geological and structural field data. To model folds that outcrop in the region, we perform three-dimensional interpolation of fold axes, and we enforce these interpolated directions on the fold geometries through tangent constraints complementing the regularisation term in the least-squares system. Furthermore, we address structural uncertainty on isoclinal recumbent folds exposed in the area by simulating a collection of virtual data at randomly located outcrops and stochastically simulating fold axes away from direct observations. These simulated fold axes are arranged in spherical orientation distributions consistent with field data and are used as additional constraints for implicit interpolation. The uncertainty analysis generates multiple scenarios for non-cylindrical folds in terms of axis orientations and interlimb angle.</div></div>","PeriodicalId":50035,"journal":{"name":"Journal of Structural Geology","volume":"191 ","pages":"Article 105329"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0191814124002815","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We present a modelling workflow for the creation of a km-scale, three-dimensional representation of the tectonic architecture exposed in the Lago di Cignana region within the Italian Pennine Alps. The model portrays notable tectonic boundaries such as the Dent Blanche Basal Thrust, the Combin Fault and the Roisan-Cignana Shear Zone. Our approach employs the implicit Discrete Smooth Interpolator, which represents the tectonic sequence as a volumetric scalar field generalising a relative distance function. The interpolation process is constrained by geological and structural field data. To model folds that outcrop in the region, we perform three-dimensional interpolation of fold axes, and we enforce these interpolated directions on the fold geometries through tangent constraints complementing the regularisation term in the least-squares system. Furthermore, we address structural uncertainty on isoclinal recumbent folds exposed in the area by simulating a collection of virtual data at randomly located outcrops and stochastically simulating fold axes away from direct observations. These simulated fold axes are arranged in spherical orientation distributions consistent with field data and are used as additional constraints for implicit interpolation. The uncertainty analysis generates multiple scenarios for non-cylindrical folds in terms of axis orientations and interlimb angle.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Structural Geology
Journal of Structural Geology 地学-地球科学综合
CiteScore
6.00
自引率
19.40%
发文量
192
审稿时长
15.7 weeks
期刊介绍: The Journal of Structural Geology publishes process-oriented investigations about structural geology using appropriate combinations of analog and digital field data, seismic reflection data, satellite-derived data, geometric analysis, kinematic analysis, laboratory experiments, computer visualizations, and analogue or numerical modelling on all scales. Contributions are encouraged to draw perspectives from rheology, rock mechanics, geophysics,metamorphism, sedimentology, petroleum geology, economic geology, geodynamics, planetary geology, tectonics and neotectonics to provide a more powerful understanding of deformation processes and systems. Given the visual nature of the discipline, supplementary materials that portray the data and analysis in 3-D or quasi 3-D manners, including the use of videos, and/or graphical abstracts can significantly strengthen the impact of contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信