Short-term load forecasting with deep learning: Improving performance with post-training specialization

Q1 Social Sciences
Igor Westphal
{"title":"Short-term load forecasting with deep learning: Improving performance with post-training specialization","authors":"Igor Westphal","doi":"10.1016/j.tej.2024.107449","DOIUrl":null,"url":null,"abstract":"<div><div>Load forecasting has increasingly relied on deep learning models due to their ability to capture complex non-linear relationships. However, these models require substantial amounts of data for effective training. Data sparsity during peak load periods can degrade the performance of deep learning models to the point that they under-perform much simpler models. To address this issue, this paper proposes a post-training specialization method in which several copies of the original deep learning model are retrained for specific forecasting tasks. Results indicate an increase in performance in all baseline models used in this paper, and the method can potentially improve the forecasting of current applications at a low computational cost.</div></div>","PeriodicalId":35642,"journal":{"name":"Electricity Journal","volume":"38 1","pages":"Article 107449"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electricity Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1040619024000848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Load forecasting has increasingly relied on deep learning models due to their ability to capture complex non-linear relationships. However, these models require substantial amounts of data for effective training. Data sparsity during peak load periods can degrade the performance of deep learning models to the point that they under-perform much simpler models. To address this issue, this paper proposes a post-training specialization method in which several copies of the original deep learning model are retrained for specific forecasting tasks. Results indicate an increase in performance in all baseline models used in this paper, and the method can potentially improve the forecasting of current applications at a low computational cost.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electricity Journal
Electricity Journal Business, Management and Accounting-Business and International Management
CiteScore
5.80
自引率
0.00%
发文量
95
审稿时长
31 days
期刊介绍: The Electricity Journal is the leading journal in electric power policy. The journal deals primarily with fuel diversity and the energy mix needed for optimal energy market performance, and therefore covers the full spectrum of energy, from coal, nuclear, natural gas and oil, to renewable energy sources including hydro, solar, geothermal and wind power. Recently, the journal has been publishing in emerging areas including energy storage, microgrid strategies, dynamic pricing, cyber security, climate change, cap and trade, distributed generation, net metering, transmission and generation market dynamics. The Electricity Journal aims to bring together the most thoughtful and influential thinkers globally from across industry, practitioners, government, policymakers and academia. The Editorial Advisory Board is comprised of electric industry thought leaders who have served as regulators, consultants, litigators, and market advocates. Their collective experience helps ensure that the most relevant and thought-provoking issues are presented to our readers, and helps navigate the emerging shape and design of the electricity/energy industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信