Dataset condensation with coarse-to-fine regularization

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hyundong Jin, Eunwoo Kim
{"title":"Dataset condensation with coarse-to-fine regularization","authors":"Hyundong Jin,&nbsp;Eunwoo Kim","doi":"10.1016/j.patrec.2024.12.018","DOIUrl":null,"url":null,"abstract":"<div><div>State-of-the-art artificial intelligence models heavily rely on datasets with large numbers of samples, necessitating substantial memory allocation for data storage and high computational costs for model training. To alleviate storage and computational overheads, dataset condensation has recently gained attention. This approach encapsulates large samples into a more compact sample set while preserving the accuracy of a network trained on an entire sample set. Existing methods focus on aligning the output logits or network parameters trained on synthetic images with those of networks trained on real images. However, these approaches fail to encapsulate the diverse information because of their inability to account for relationships between synthetic images, leading to information redundancy between multiple synthetic images. To address these issues, we exploit the relationships among synthetic samples. This allows us to create diverse representations of synthetic images across distinct classes and to encourage diversity within the same class. We further promote diverse representations between synthetic image sub-regions. Experimental results with various datasets demonstrate that our method outperforms competitors by up to 12.2%. Moreover, the networks, which were not encountered during the condensation process, and were trained using our synthesized dataset, outperform other methods.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"188 ","pages":"Pages 178-184"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865524003726","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

State-of-the-art artificial intelligence models heavily rely on datasets with large numbers of samples, necessitating substantial memory allocation for data storage and high computational costs for model training. To alleviate storage and computational overheads, dataset condensation has recently gained attention. This approach encapsulates large samples into a more compact sample set while preserving the accuracy of a network trained on an entire sample set. Existing methods focus on aligning the output logits or network parameters trained on synthetic images with those of networks trained on real images. However, these approaches fail to encapsulate the diverse information because of their inability to account for relationships between synthetic images, leading to information redundancy between multiple synthetic images. To address these issues, we exploit the relationships among synthetic samples. This allows us to create diverse representations of synthetic images across distinct classes and to encourage diversity within the same class. We further promote diverse representations between synthetic image sub-regions. Experimental results with various datasets demonstrate that our method outperforms competitors by up to 12.2%. Moreover, the networks, which were not encountered during the condensation process, and were trained using our synthesized dataset, outperform other methods.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信