The Gowers U3 norm of one family of cubic power permutations

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Zhaole Li , Deng Tang
{"title":"The Gowers U3 norm of one family of cubic power permutations","authors":"Zhaole Li ,&nbsp;Deng Tang","doi":"10.1016/j.dam.2025.01.024","DOIUrl":null,"url":null,"abstract":"<div><div>The Gowers uniformity norm has emerged as a significant metric in the evaluation of Boolean functions employed in symmetric-key encryptions, particularly in assessing their resilience against low degree approximation attacks. Beyond cryptography, this norm plays a pivotal role in theoretical computer science, including pseudorandomness and property testing of Boolean functions. However, the determination of the Gowers <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> norm for <span><math><mrow><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span> for general Boolean functions presents substantial computational and theoretical challenges. Recently, the relationship between the Gowers uniformity norm and the higher-order differential spectrum of Boolean functions has been derived. Furthermore, the fact that the Gowers uniformity norm of a power permutation can be determined by the Gowers uniformity norm of its any component function. In this paper, we focus on determining the Gowers <span><math><msub><mrow><mi>U</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> norm of one family of power permutations, thereby assessing their resistance to quadratic approximation attacks. The family contains five classes of power permutations, which are <span><math><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>+</mo><mn>3</mn></mrow></msup></math></span> with even <span><math><mrow><mi>n</mi><mo>≥</mo><mn>4</mn></mrow></math></span>, <span><math><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn><mi>s</mi></mrow></msup><mo>+</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>s</mi></mrow></msup><mo>+</mo><mn>1</mn></mrow></msup></math></span> with <span><math><mrow><mn>1</mn><mo>≤</mo><mi>s</mi><mo>≤</mo><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></mrow></math></span> and <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, <span><math><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>+</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>+</mo><mn>1</mn></mrow></msup></math></span> with <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, <span><math><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>+</mo><msup><mrow><mn>2</mn></mrow><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>+</mo><mn>1</mn></mrow></msup></math></span> with even <span><math><mrow><mi>n</mi><mo>≥</mo><mn>4</mn></mrow></math></span>, and <span><math><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>+</mo><msup><mrow><mn>2</mn></mrow><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>+</mo><mn>1</mn></mrow></msup></math></span> with odd <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span>. We establish the second-order differential spectrum of these power permutations, by determining the number of solutions of certain linearized polynomials. Thus, we are able to derive the Gowers <span><math><msub><mrow><mi>U</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> norms of these power permutations. At last we present a comparison of the Gowers <span><math><msub><mrow><mi>U</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> norms of these power permutations. Our analysis yielded a significant finding that the power permutation <span><math><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>+</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>+</mo><mn>1</mn></mrow></msup></math></span> with <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span> exhibits a better resistance against quadratic approximation attacks than the other four classes of power permutations.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"365 ","pages":"Pages 208-222"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25000320","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The Gowers uniformity norm has emerged as a significant metric in the evaluation of Boolean functions employed in symmetric-key encryptions, particularly in assessing their resilience against low degree approximation attacks. Beyond cryptography, this norm plays a pivotal role in theoretical computer science, including pseudorandomness and property testing of Boolean functions. However, the determination of the Gowers Uk norm for k3 for general Boolean functions presents substantial computational and theoretical challenges. Recently, the relationship between the Gowers uniformity norm and the higher-order differential spectrum of Boolean functions has been derived. Furthermore, the fact that the Gowers uniformity norm of a power permutation can be determined by the Gowers uniformity norm of its any component function. In this paper, we focus on determining the Gowers U3 norm of one family of power permutations, thereby assessing their resistance to quadratic approximation attacks. The family contains five classes of power permutations, which are x2n2+3 with even n4, x22s+2s+1 with 1sn2 and n3, x2n1+2n2+1 with n3, x2n1+2n2+1 with even n4, and x2n1+2n12+1 with odd n3. We establish the second-order differential spectrum of these power permutations, by determining the number of solutions of certain linearized polynomials. Thus, we are able to derive the Gowers U3 norms of these power permutations. At last we present a comparison of the Gowers U3 norms of these power permutations. Our analysis yielded a significant finding that the power permutation x2n1+2n2+1 with n3 exhibits a better resistance against quadratic approximation attacks than the other four classes of power permutations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信