{"title":"Bounds for boxicity of circular clique graphs and zero-divisor graphs","authors":"T. Kavaskar","doi":"10.1016/j.dam.2025.01.038","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><mi>b</mi><mi>o</mi><mi>x</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the boxicity of a graph <span><math><mi>G</mi></math></span>, <span><math><mrow><mi>G</mi><mrow><mo>[</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></mrow></mrow></math></span> be the <span><math><mi>G</mi></math></span>-join graph of <span><math><mi>n</mi></math></span>-pairwise disjoint graphs <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>, <span><math><msubsup><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> be a circular clique graph (where <span><math><mrow><mi>k</mi><mo>≥</mo><mn>2</mn><mi>d</mi></mrow></math></span>) and <span><math><mrow><mi>Γ</mi><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> be the zero-divisor graph of a commutative ring <span><math><mi>R</mi></math></span> with unity. In this paper, we prove that <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><msubsup><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>d</mi></mrow></msubsup><mo>)</mo></mrow><mo>≥</mo><mi>b</mi><mi>o</mi><mi>x</mi><mrow><mo>(</mo><msubsup><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>d</mi></mrow></msubsup><mo>)</mo></mrow></mrow></math></span>, for all <span><math><mi>k</mi></math></span> and <span><math><mi>d</mi></math></span> with <span><math><mrow><mi>k</mi><mo>≥</mo><mn>2</mn><mi>d</mi></mrow></math></span>. This generalizes the results proved by Kamibeppu (2018). Also we obtain that <span><math><mrow><mi>b</mi><mi>o</mi><mi>x</mi><mrow><mo>(</mo><mi>G</mi><mrow><mo>[</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></mrow><mo>)</mo></mrow><mo>≤</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mi>b</mi><mi>o</mi><mi>x</mi><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>. As a consequence of this result, we obtain a bound for boxicity of ideal-based zero-divisor graph of a finite commutative ring with unity. In particular, if <span><math><mrow><mi>R</mi><mo>≇</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>×</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></mrow></math></span> is a finite commutative non-zero reduced ring with unity, where <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> is a finite filed, then <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>Γ</mi><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>≤</mo><mi>b</mi><mi>o</mi><mi>x</mi><mrow><mo>(</mo><mi>Γ</mi><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>≤</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>χ</mi><mrow><mo>(</mo><mi>Γ</mi><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></msup><mo>−</mo><mn>2</mn></mrow></math></span>. where <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>Γ</mi><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> is the chromatic number of <span><math><mrow><mi>Γ</mi><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>. Moreover, we show that if <span><math><mrow><mi>N</mi><mo>=</mo><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>a</mi></mrow></msubsup><msubsup><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msubsup><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>b</mi></mrow></msubsup><msubsup><mrow><mi>q</mi></mrow><mrow><mi>j</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>m</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>+</mo><mn>1</mn></mrow></msubsup></mrow></math></span> is a composite number, where <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>’s and <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span>’s are distinct prime numbers, then <span><math><mrow><mi>b</mi><mi>o</mi><mi>x</mi><mrow><mo>(</mo><mi>Γ</mi><mrow><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>)</mo></mrow><mo>)</mo></mrow><mo>≤</mo><mrow><mo>(</mo><mrow><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>a</mi></mrow></msubsup><mrow><mo>(</mo><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>+</mo><mn>1</mn><mo>)</mo></mrow><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>b</mi></mrow></msubsup><mrow><mo>(</mo><mn>2</mn><msub><mrow><mi>m</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>+</mo><mn>2</mn><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mo>−</mo><mrow><mo>(</mo><mrow><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>a</mi></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>+</mo><mn>1</mn><mo>)</mo></mrow><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>b</mi></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mo>−</mo><mn>1</mn></mrow></math></span>, where <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> is the ring of integers modulo <span><math><mi>N</mi></math></span>. Further, we prove that, <span><math><mrow><mi>b</mi><mi>o</mi><mi>x</mi><mrow><mo>(</mo><mi>Γ</mi><mrow><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> if and only if either <span><math><mrow><mi>N</mi><mo>=</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> for some prime number <span><math><mi>p</mi></math></span> and some positive integer <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span> or <span><math><mrow><mi>N</mi><mo>=</mo><mn>2</mn><mi>p</mi></mrow></math></span> for some odd prime number <span><math><mi>p</mi></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"365 ","pages":"Pages 260-269"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25000460","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Let be the boxicity of a graph , be the -join graph of -pairwise disjoint graphs , be a circular clique graph (where ) and be the zero-divisor graph of a commutative ring with unity. In this paper, we prove that , for all and with . This generalizes the results proved by Kamibeppu (2018). Also we obtain that . As a consequence of this result, we obtain a bound for boxicity of ideal-based zero-divisor graph of a finite commutative ring with unity. In particular, if is a finite commutative non-zero reduced ring with unity, where is a finite filed, then . where is the chromatic number of . Moreover, we show that if is a composite number, where ’s and ’s are distinct prime numbers, then , where is the ring of integers modulo . Further, we prove that, if and only if either for some prime number and some positive integer or for some odd prime number .
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.