Local optimization cropping and boundary enhancement for end-to-end weakly-supervised segmentation network

IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Weizheng Wang, Chao Zeng, Haonan Wang, Lei Zhou
{"title":"Local optimization cropping and boundary enhancement for end-to-end weakly-supervised segmentation network","authors":"Weizheng Wang,&nbsp;Chao Zeng,&nbsp;Haonan Wang,&nbsp;Lei Zhou","doi":"10.1016/j.cviu.2024.104260","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, the performance of weakly-supervised semantic segmentation(WSSS) has significantly increased. It usually employs image-level labels to generate Class Activation Map (CAM) for producing pseudo-labels, which greatly reduces the cost of annotation. Since CNN cannot fully identify object regions, researchers found that Vision Transformers (ViT) can complement the deficiencies of CNN by better extracting global contextual information. However, ViT also introduces the problem of over-smoothing. Great progress has been made in recent years to solve the over-smoothing problem, yet two issues remain. The first issue is that the high-confidence regions in the network-generated CAM still contain areas irrelevant to the class. The second issue is the inaccuracy of CAM boundaries, which contain a small portion of background regions. As we know, the precision of label boundaries is closely tied to excellent segmentation performance. In this work, to address the first issue, we propose a local optimized cropping module (LOC). By randomly cropping selected regions, we allow the local class tokens to be contrasted with the global class tokens. This method facilitates enhanced consistency between local and global representations. To address the second issue, we design a boundary enhancement module (BE) that utilizes an erasing strategy to re-train the image, increasing the network’s extraction of boundary information and greatly improving the accuracy of CAM boundaries, thereby enhancing the quality of pseudo labels. Experiments on the PASCAL VOC dataset show that the performance of our proposed LOC-BE Net outperforms multi-stage methods and is competitive with end-to-end methods. On the PASCAL VOC dataset, our method achieves a CAM mIoU of 74.2% and a segmentation mIoU of 73.1%. On the COCO2014 dataset, our method achieves a CAM mIoU of 43.8% and a segmentation mIoU of 43.4%. Our code has been open sourced: <span><span>https://github.com/whn786/LOC-BE/tree/main</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"251 ","pages":"Article 104260"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314224003412","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the performance of weakly-supervised semantic segmentation(WSSS) has significantly increased. It usually employs image-level labels to generate Class Activation Map (CAM) for producing pseudo-labels, which greatly reduces the cost of annotation. Since CNN cannot fully identify object regions, researchers found that Vision Transformers (ViT) can complement the deficiencies of CNN by better extracting global contextual information. However, ViT also introduces the problem of over-smoothing. Great progress has been made in recent years to solve the over-smoothing problem, yet two issues remain. The first issue is that the high-confidence regions in the network-generated CAM still contain areas irrelevant to the class. The second issue is the inaccuracy of CAM boundaries, which contain a small portion of background regions. As we know, the precision of label boundaries is closely tied to excellent segmentation performance. In this work, to address the first issue, we propose a local optimized cropping module (LOC). By randomly cropping selected regions, we allow the local class tokens to be contrasted with the global class tokens. This method facilitates enhanced consistency between local and global representations. To address the second issue, we design a boundary enhancement module (BE) that utilizes an erasing strategy to re-train the image, increasing the network’s extraction of boundary information and greatly improving the accuracy of CAM boundaries, thereby enhancing the quality of pseudo labels. Experiments on the PASCAL VOC dataset show that the performance of our proposed LOC-BE Net outperforms multi-stage methods and is competitive with end-to-end methods. On the PASCAL VOC dataset, our method achieves a CAM mIoU of 74.2% and a segmentation mIoU of 73.1%. On the COCO2014 dataset, our method achieves a CAM mIoU of 43.8% and a segmentation mIoU of 43.4%. Our code has been open sourced: https://github.com/whn786/LOC-BE/tree/main.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Vision and Image Understanding
Computer Vision and Image Understanding 工程技术-工程:电子与电气
CiteScore
7.80
自引率
4.40%
发文量
112
审稿时长
79 days
期刊介绍: The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views. Research Areas Include: • Theory • Early vision • Data structures and representations • Shape • Range • Motion • Matching and recognition • Architecture and languages • Vision systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信