{"title":"Graph-based Dense Event Grounding with relative positional encoding","authors":"Jianxiang Dong, Zhaozheng Yin","doi":"10.1016/j.cviu.2024.104257","DOIUrl":null,"url":null,"abstract":"<div><div>Temporal Sentence Grounding (TSG) in videos aims to localize a temporal moment from an untrimmed video that is relevant to a given query sentence. Most existing methods focus on addressing the problem of single sentence grounding. Recently, researchers proposed a new Dense Event Grounding (DEG) problem by extending the single event localization to a multi-event localization, where the temporal moments of multiple events described by multiple sentences are retrieved. In this paper, we introduce an effective proposal-based approach to solve the DEG problem. A Relative Sentence Interaction (RSI) module using graph neural network is proposed to model the event relationship by introducing a temporal relative positional encoding to learn the relative temporal order information between sentences in a dense multi-sentence query. In addition, we design an Event-contextualized Cross-modal Interaction (ECI) module to tackle the lack of global information from other related events when fusing visual and sentence features. Finally, we construct an Event Graph (EG) with intra-event edges and inter-event edges to model the relationship between proposals in the same event and proposals in different events to further refine their representations for final localizations. Extensive experiments on ActivityNet-Captions and TACoS datasets show the effectiveness of our solution.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"251 ","pages":"Article 104257"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314224003382","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Temporal Sentence Grounding (TSG) in videos aims to localize a temporal moment from an untrimmed video that is relevant to a given query sentence. Most existing methods focus on addressing the problem of single sentence grounding. Recently, researchers proposed a new Dense Event Grounding (DEG) problem by extending the single event localization to a multi-event localization, where the temporal moments of multiple events described by multiple sentences are retrieved. In this paper, we introduce an effective proposal-based approach to solve the DEG problem. A Relative Sentence Interaction (RSI) module using graph neural network is proposed to model the event relationship by introducing a temporal relative positional encoding to learn the relative temporal order information between sentences in a dense multi-sentence query. In addition, we design an Event-contextualized Cross-modal Interaction (ECI) module to tackle the lack of global information from other related events when fusing visual and sentence features. Finally, we construct an Event Graph (EG) with intra-event edges and inter-event edges to model the relationship between proposals in the same event and proposals in different events to further refine their representations for final localizations. Extensive experiments on ActivityNet-Captions and TACoS datasets show the effectiveness of our solution.
期刊介绍:
The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views.
Research Areas Include:
• Theory
• Early vision
• Data structures and representations
• Shape
• Range
• Motion
• Matching and recognition
• Architecture and languages
• Vision systems