Supermodularity and incentive reversal in teams

IF 1 3区 经济学 Q3 ECONOMICS
Svetlana Boyarchenko , Dominika Machowska , Iryna Topolyan
{"title":"Supermodularity and incentive reversal in teams","authors":"Svetlana Boyarchenko ,&nbsp;Dominika Machowska ,&nbsp;Iryna Topolyan","doi":"10.1016/j.geb.2024.12.001","DOIUrl":null,"url":null,"abstract":"<div><div>This paper takes a new look at the issue of incentive reversal in (strategic) team games, by relying on supermodularity techniques. In a setting with no contractual possibilities, we provide minimal sufficient conditions for one or both players to supply less effort in exogenously more productive environments, at the two extremal Nash equilibria. Unlike the existing literature, the analysis does not utilize concavity and other unnecessary assumptions and explicitly takes into account existence and possible multiplicity of pure-strategy Nash equilibria. We derive respective sufficient conditions for strong and weak incentive reversal for asymmetric games under strategic complementarity and substitutability respectively. We also consider incentive reversal for a broad class of symmetric games. These parsimonious conditions allow for a more transparent intuitive interpretation of the results.</div></div>","PeriodicalId":48291,"journal":{"name":"Games and Economic Behavior","volume":"150 ","pages":"Pages 93-105"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Games and Economic Behavior","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0899825624001829","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper takes a new look at the issue of incentive reversal in (strategic) team games, by relying on supermodularity techniques. In a setting with no contractual possibilities, we provide minimal sufficient conditions for one or both players to supply less effort in exogenously more productive environments, at the two extremal Nash equilibria. Unlike the existing literature, the analysis does not utilize concavity and other unnecessary assumptions and explicitly takes into account existence and possible multiplicity of pure-strategy Nash equilibria. We derive respective sufficient conditions for strong and weak incentive reversal for asymmetric games under strategic complementarity and substitutability respectively. We also consider incentive reversal for a broad class of symmetric games. These parsimonious conditions allow for a more transparent intuitive interpretation of the results.
团队中的超模块化和激励逆转
本文利用超模块化技术对(战略)团队博弈中的激励逆转问题进行了新的研究。在没有契约可能性的情况下,我们在两个极端纳什均衡中为一个或两个参与者提供了最小充分条件,使其在外生生产率更高的环境中提供更少的努力。与现有文献不同,该分析没有利用凹性和其他不必要的假设,而是明确考虑了纯策略纳什均衡的存在性和可能的多重性。分别在战略互补性和可替代性条件下,导出了非对称对策强激励反转和弱激励反转的充分条件。我们还考虑了广义对称博弈的激励反转。这些简单的条件允许对结果进行更透明的直观解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
9.10%
发文量
148
期刊介绍: Games and Economic Behavior facilitates cross-fertilization between theories and applications of game theoretic reasoning. It consistently attracts the best quality and most creative papers in interdisciplinary studies within the social, biological, and mathematical sciences. Most readers recognize it as the leading journal in game theory. Research Areas Include: • Game theory • Economics • Political science • Biology • Computer science • Mathematics • Psychology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信