Abdelkader El Makouri , Abdallah Slaoui , Rachid Ahl Laamara
{"title":"Quantum unital Otto heat engines: Using Kirkwood–Dirac quasi-probability for the engine’s coherence to stay alive","authors":"Abdelkader El Makouri , Abdallah Slaoui , Rachid Ahl Laamara","doi":"10.1016/j.aop.2024.169889","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we consider <em>quantum unital Otto heat engines</em>. The latter refers to the fact that both the unitaries of the adiabatic strokes and the source of the heat provided to the engine preserve the maximally mixed state. We show how to compute the cumulants of either the dephased or undephased engine. For a qubit, we give the analytical expressions of the averages and variances for arbitrary unitaries and unital channels. We do a detailed comparative study between the dephased and undephased heat engines. More precisely, we focus on the effect of the parameters on the average work and its reliability and efficiency. As a case study of unital channels, we consider a quantum projective measurement. We show on which basis we should projectively measure the qubit, either the dephased or undephased heat engine, to extract higher amounts of work, increase the latter’s reliability, and increase efficiency. Further, we show that non-adiabatic transitions <em>are not always detrimental</em> to thermodynamic quantities. Our results, we believe, are important for heat engines fueled by <em>quantum measurement</em>.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"473 ","pages":"Article 169889"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003491624002963","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we consider quantum unital Otto heat engines. The latter refers to the fact that both the unitaries of the adiabatic strokes and the source of the heat provided to the engine preserve the maximally mixed state. We show how to compute the cumulants of either the dephased or undephased engine. For a qubit, we give the analytical expressions of the averages and variances for arbitrary unitaries and unital channels. We do a detailed comparative study between the dephased and undephased heat engines. More precisely, we focus on the effect of the parameters on the average work and its reliability and efficiency. As a case study of unital channels, we consider a quantum projective measurement. We show on which basis we should projectively measure the qubit, either the dephased or undephased heat engine, to extract higher amounts of work, increase the latter’s reliability, and increase efficiency. Further, we show that non-adiabatic transitions are not always detrimental to thermodynamic quantities. Our results, we believe, are important for heat engines fueled by quantum measurement.
期刊介绍:
Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance.
The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.