Multilayered molybdenum carbonitride MXene: Reductive defunctionalization, thermal stability, and catalysis of ammonia synthesis and decomposition

Evgenia Kountoupi , Diana Piankova , Mikhail Agrachev , Zixuan Chen , Alberto Garbujo , Paula M. Abdala , Christoph R. Müller , Alexey Fedorov
{"title":"Multilayered molybdenum carbonitride MXene: Reductive defunctionalization, thermal stability, and catalysis of ammonia synthesis and decomposition","authors":"Evgenia Kountoupi ,&nbsp;Diana Piankova ,&nbsp;Mikhail Agrachev ,&nbsp;Zixuan Chen ,&nbsp;Alberto Garbujo ,&nbsp;Paula M. Abdala ,&nbsp;Christoph R. Müller ,&nbsp;Alexey Fedorov","doi":"10.1016/j.mtcata.2024.100085","DOIUrl":null,"url":null,"abstract":"<div><div>Harnessing two-dimensional (2D) materials for catalytic applications is promising due to the high site utilization. Here, we synthesized a 2D molybdenum carbonitride of the MXene family, Mo<sub>2</sub>(C,N)<em>T</em><sub><em>x</em></sub>, and applied it as a catalyst for ammonia synthesis and decomposition, the essential reactions to establish NH<sub>3</sub> as an energy vector. We determine the thermal stability limit of Mo<sub>2</sub>(C,N)<em>T</em><sub><em>x</em></sub> under H<sub>2</sub> flow to be ca. 575 °C. Exceeding this temperature results, under H<sub>2</sub>, in a transformation of the predominantly defunctionalized Mo<sub>2</sub>(C,N)<em>T</em><sub><em>x</em></sub> to a 3D Mo<sub>2</sub>(C,N) phase, which prevents the complete defunctionalization of Mo<sub>2</sub>(C,N)<em>T</em><sub><em>x</em></sub> while retaining its 2D morphology. Before this phase transformation occurs, the remaining <em>T</em><sub><em>x</em></sub> species reside in the interior layers of the mostly defunctionalized Mo<sub>2</sub>(C,N)<em>T</em><sub><em>x</em></sub> nanoplatelets, with the amorphous exterior being free from <em>T</em><sub><em>x</em></sub> groups, rendering the Mo<sub>2</sub>(C,N)<em>T</em><sub><em>x</em></sub> nanoplatelets chemically anisotropic in the direction orthogonal to the basal plane. The effect of this structure on catalytic properties is highlighted in the thermocatalytic synthesis and decomposition of NH<sub>3</sub>. In the latter reaction, Mo<sub>2</sub>(C,N)<em>T</em><sub><em>x</em></sub> shows similar gravimetric rates to a reference bulk β-Μο<sub>2</sub>Ν catalyst, which is ascribed to the presence of too narrow 2D pores (ca. 5.2 Å) with irregular shapes due to a disorder in the stacking of nanosheets in Mo<sub>2</sub>(C,N)<em>T</em><sub><em>x</em></sub>, limiting interlayer diffusion. A deactivation pathway in Mo-based MXenes was identified, and it relates to a precipitation of carbon vacancies to metallic molybdenum under NH<sub>3</sub> decomposition conditions. While the ammonia decomposition reaction shows no dependence of the reaction rate on the specific H<sub>2</sub> pretreatment of Mo<sub>2</sub>(C,N)<em>T</em><sub><em>x</em></sub> (500 or 575 °C), the gravimetric ammonia formation rate increases appreciably with H<sub>2</sub> pretreatment, <em>viz</em>., Mo<sub>2</sub>(C,N)<em>T</em><sub><em>x</em></sub> pretreated at 575 °C outperforms by ca. four times both the reference β-Μο<sub>2</sub>Ν catalyst and Mo<sub>2</sub>(C,N)<em>T</em><sub><em>x</em></sub> pretreated at 500 °C, explained by a smaller molecule size of the reactants H<sub>2</sub> and N<sub>2</sub> relative to NH<sub>3</sub>, and an increased accessibility and utilization of the interlayer space for ammonia synthesis. Overall, our study highlights the importance of addressing limitations due to small pore sizes in multilayered MXenes and the stability of carbon vacancies while simultaneously using optimized pretreatment conditions for surface defunctionalization to uncover the full potential of MXene-based heterogeneous catalysts.</div></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"8 ","pages":"Article 100085"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949754X24000474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Harnessing two-dimensional (2D) materials for catalytic applications is promising due to the high site utilization. Here, we synthesized a 2D molybdenum carbonitride of the MXene family, Mo2(C,N)Tx, and applied it as a catalyst for ammonia synthesis and decomposition, the essential reactions to establish NH3 as an energy vector. We determine the thermal stability limit of Mo2(C,N)Tx under H2 flow to be ca. 575 °C. Exceeding this temperature results, under H2, in a transformation of the predominantly defunctionalized Mo2(C,N)Tx to a 3D Mo2(C,N) phase, which prevents the complete defunctionalization of Mo2(C,N)Tx while retaining its 2D morphology. Before this phase transformation occurs, the remaining Tx species reside in the interior layers of the mostly defunctionalized Mo2(C,N)Tx nanoplatelets, with the amorphous exterior being free from Tx groups, rendering the Mo2(C,N)Tx nanoplatelets chemically anisotropic in the direction orthogonal to the basal plane. The effect of this structure on catalytic properties is highlighted in the thermocatalytic synthesis and decomposition of NH3. In the latter reaction, Mo2(C,N)Tx shows similar gravimetric rates to a reference bulk β-Μο2Ν catalyst, which is ascribed to the presence of too narrow 2D pores (ca. 5.2 Å) with irregular shapes due to a disorder in the stacking of nanosheets in Mo2(C,N)Tx, limiting interlayer diffusion. A deactivation pathway in Mo-based MXenes was identified, and it relates to a precipitation of carbon vacancies to metallic molybdenum under NH3 decomposition conditions. While the ammonia decomposition reaction shows no dependence of the reaction rate on the specific H2 pretreatment of Mo2(C,N)Tx (500 or 575 °C), the gravimetric ammonia formation rate increases appreciably with H2 pretreatment, viz., Mo2(C,N)Tx pretreated at 575 °C outperforms by ca. four times both the reference β-Μο2Ν catalyst and Mo2(C,N)Tx pretreated at 500 °C, explained by a smaller molecule size of the reactants H2 and N2 relative to NH3, and an increased accessibility and utilization of the interlayer space for ammonia synthesis. Overall, our study highlights the importance of addressing limitations due to small pore sizes in multilayered MXenes and the stability of carbon vacancies while simultaneously using optimized pretreatment conditions for surface defunctionalization to uncover the full potential of MXene-based heterogeneous catalysts.

Abstract Image

多层碳氮化钼MXene:还原解功能化、热稳定性及催化氨合成与分解
由于高现场利用率,利用二维(2D)材料进行催化应用是有前途的。在此,我们合成了MXene族的二维碳化钼Mo2(C,N)Tx,并将其作为氨合成和分解的催化剂,这是建立NH3作为能量矢量的必要反应。我们确定了Mo2(C,N)Tx在H2流下的热稳定性极限约为575℃。超过这个温度,在H2条件下,主要失功能化的Mo2(C,N)Tx转变为3D Mo2(C,N)相,这阻止了Mo2(C,N)Tx完全失功能化,同时保留了其二维形态。在此相变发生之前,剩余的Tx存在于大部分失功能化的Mo2(C,N)Tx纳米片的内层,而无定形的外部没有Tx基团,使得Mo2(C,N)Tx纳米片在与基面正交的方向上具有化学各向异性。这种结构对NH3热催化合成和分解的催化性能的影响是突出的。在后一种反应中,Mo2(C,N)Tx表现出与参考体β-Μο2Ν催化剂相似的重速率,这是由于Mo2(C,N)Tx纳米片的无序堆积导致存在形状不规则的2D孔(ca. 5.2 Å),限制了层间扩散。确定了mo基MXenes的失活途径,该失活途径与NH3分解条件下碳空位向金属钼的沉淀有关。虽然氨分解反应的反应速率与Mo2(C,N)Tx(500或575℃)的特定H2预处理无关,但H2预处理显著提高了重量氨生成速率,即575℃预处理的Mo2(C,N)Tx的性能比参考β-Μο2Ν催化剂和500℃预处理的Mo2(C,N)Tx的性能好约4倍,这是因为反应物H2和N2相对于NH3的分子尺寸更小。并且增加了氨合成层间空间的可达性和利用率。总的来说,我们的研究强调了解决多层MXenes的小孔径限制和碳空位稳定性的重要性,同时使用优化的预处理条件进行表面去功能化,以揭示基于MXenes的多相催化剂的全部潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信