Oxygen vacancy-mediated high-entropy oxide electrocatalysts for efficient oxygen evolution reaction

Ruonan Liu , Yaotian Yan , Liang Dun , Taili Yang , Bin Qin , Peijia Wang , Wei Cai , Shude Liu , Xiaohang Zheng
{"title":"Oxygen vacancy-mediated high-entropy oxide electrocatalysts for efficient oxygen evolution reaction","authors":"Ruonan Liu ,&nbsp;Yaotian Yan ,&nbsp;Liang Dun ,&nbsp;Taili Yang ,&nbsp;Bin Qin ,&nbsp;Peijia Wang ,&nbsp;Wei Cai ,&nbsp;Shude Liu ,&nbsp;Xiaohang Zheng","doi":"10.1016/j.mtcata.2024.100086","DOIUrl":null,"url":null,"abstract":"<div><div>Transition metal oxides hold great potential for water splitting due to their tunable electronic structures and abundant availability. However, their inherently poor electrical conductivity and limited catalytic activity hinder their practical implementation. Herein, high-entropy oxide (FeCoNiCrCuO) electrocatalysts featuring grain-like structure and oxygen vacancies-enriched surface were synthesized through an ultra-fast non-equilibrium high-temperature shock. The introduction of oxygen vacancies modulates the electronic structure and increases the carrier concentration, accelerating the rate-determining step of the oxygen evolution reactions and reducing the overpotential of oxygen evolution reactions. Consequently, the synthesized FeCoNiCrCuO electrocatalyst delivers a low overpotential of 256 mV at a current density of 10 mA·cm⁻² and a Tafel slope of 48.2 mV·dec⁻¹ in 1 M KOH, which is superior to samples lacking oxygen vacancies after annealing. This study presents an alternative approach to enhancing OER activity by employing a high-entropy oxide engineering strategy.</div></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"8 ","pages":"Article 100086"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949754X24000486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Transition metal oxides hold great potential for water splitting due to their tunable electronic structures and abundant availability. However, their inherently poor electrical conductivity and limited catalytic activity hinder their practical implementation. Herein, high-entropy oxide (FeCoNiCrCuO) electrocatalysts featuring grain-like structure and oxygen vacancies-enriched surface were synthesized through an ultra-fast non-equilibrium high-temperature shock. The introduction of oxygen vacancies modulates the electronic structure and increases the carrier concentration, accelerating the rate-determining step of the oxygen evolution reactions and reducing the overpotential of oxygen evolution reactions. Consequently, the synthesized FeCoNiCrCuO electrocatalyst delivers a low overpotential of 256 mV at a current density of 10 mA·cm⁻² and a Tafel slope of 48.2 mV·dec⁻¹ in 1 M KOH, which is superior to samples lacking oxygen vacancies after annealing. This study presents an alternative approach to enhancing OER activity by employing a high-entropy oxide engineering strategy.
氧空位介导的高效析氧反应的高熵氧化物电催化剂
过渡金属氧化物由于其可调谐的电子结构和丰富的可用性而具有很大的水裂解潜力。然而,它们固有的导电性差和有限的催化活性阻碍了它们的实际应用。本文采用超快速非平衡高温冲击法制备了具有晶粒状结构、表面富氧空位的高熵氧化物(FeCoNiCrCuO)电催化剂。氧空位的引入调节了电子结构,增加了载流子浓度,加快了析氧反应的速率决定步骤,降低了析氧反应的过电位。因此,合成的FeCoNiCrCuO电催化剂在电流密度为10 mA·cm⁻²时的过电位为256 mV,在1 M KOH条件下的Tafel斜率为48.2 mV·dec⁻¹ ,优于退火后缺乏氧空位的样品。本研究提出了一种通过采用高熵氧化物工程策略来提高OER活性的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信