Nonmetallic phosphorus alloying to regulate the oxygen reduction mechanisms of platinum catalyst

IF 9.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yizhe Chen , Yuzhou Jiao , Liangyu Sun , Cheng Yuan , Qian Shen , Peng Li , Shiming Zhang , Jiujun Zhang
{"title":"Nonmetallic phosphorus alloying to regulate the oxygen reduction mechanisms of platinum catalyst","authors":"Yizhe Chen ,&nbsp;Yuzhou Jiao ,&nbsp;Liangyu Sun ,&nbsp;Cheng Yuan ,&nbsp;Qian Shen ,&nbsp;Peng Li ,&nbsp;Shiming Zhang ,&nbsp;Jiujun Zhang","doi":"10.1016/j.cclet.2024.110789","DOIUrl":null,"url":null,"abstract":"<div><div>Platinum (Pt) nanoparticle catalysts remain the most popular cathode materials for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells. Non-metallic alloying of Pt has become an emerging strategy to improve electrocatalytic performance, however, the electrocatalytic ORR mechanisms still need to be understood for further improvement toward practical application. Herein, a rapid microwave reduction method is employed for alloying phosphorous (P) into Pt to form a carbon supported phosphorus-alloyed Pt nanoparticle catalyst (P-Pt/C), which demonstrates the ability to replace commercial Pt/C. By a combination of density functional theory calculations and <em>in-situ</em> electrochemical Raman spectroscopy, the regulation role of P-alloying in the electrocatalytic mechanisms is revealed. It is found that the nearby Pt atoms can convert the ORR pathway from associative one to dissociative one, exhibiting a spontaneous dissociation of *OOH intermediate to *OH and *O species as well as a change of potential determining step to *O protonation. Furthermore, the strategy of large-scale economic synthesis of such alloying Pt-based catalyst is also established, demonstrated by a gram-level synthesis per batch. This study puts insight into the electrocatalytic ORR fundamentals of Pt-alloying with non-metals and provides a basis for the reasonable design and synthesis of efficient nonmetals-alloyed Pt catalysts.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 4","pages":"Article 110789"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Chemical Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001841724013056","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Platinum (Pt) nanoparticle catalysts remain the most popular cathode materials for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells. Non-metallic alloying of Pt has become an emerging strategy to improve electrocatalytic performance, however, the electrocatalytic ORR mechanisms still need to be understood for further improvement toward practical application. Herein, a rapid microwave reduction method is employed for alloying phosphorous (P) into Pt to form a carbon supported phosphorus-alloyed Pt nanoparticle catalyst (P-Pt/C), which demonstrates the ability to replace commercial Pt/C. By a combination of density functional theory calculations and in-situ electrochemical Raman spectroscopy, the regulation role of P-alloying in the electrocatalytic mechanisms is revealed. It is found that the nearby Pt atoms can convert the ORR pathway from associative one to dissociative one, exhibiting a spontaneous dissociation of *OOH intermediate to *OH and *O species as well as a change of potential determining step to *O protonation. Furthermore, the strategy of large-scale economic synthesis of such alloying Pt-based catalyst is also established, demonstrated by a gram-level synthesis per batch. This study puts insight into the electrocatalytic ORR fundamentals of Pt-alloying with non-metals and provides a basis for the reasonable design and synthesis of efficient nonmetals-alloyed Pt catalysts.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Chemical Letters
Chinese Chemical Letters 化学-化学综合
CiteScore
14.10
自引率
15.40%
发文量
8969
审稿时长
1.6 months
期刊介绍: Chinese Chemical Letters (CCL) (ISSN 1001-8417) was founded in July 1990. The journal publishes preliminary accounts in the whole field of chemistry, including inorganic chemistry, organic chemistry, analytical chemistry, physical chemistry, polymer chemistry, applied chemistry, etc.Chinese Chemical Letters does not accept articles previously published or scheduled to be published. To verify originality, your article may be checked by the originality detection service CrossCheck.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信