Whole-genome sequence-based comparison of antimicrobial resistant diarrheagenic Escherichia coli in pork and chicken production chains in Korea

IF 5 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Hyeonwoo Cho , Yeona Kim , Amany Hassan , Kun Taek Park
{"title":"Whole-genome sequence-based comparison of antimicrobial resistant diarrheagenic Escherichia coli in pork and chicken production chains in Korea","authors":"Hyeonwoo Cho ,&nbsp;Yeona Kim ,&nbsp;Amany Hassan ,&nbsp;Kun Taek Park","doi":"10.1016/j.ijfoodmicro.2025.111085","DOIUrl":null,"url":null,"abstract":"<div><div>Diarrheagenic <em>Escherichia coli</em> (DEC) is a serious public health threat. We investigated the distribution, antimicrobial resistance, and molecular characteristics of DEC in pork and chicken production chains following the “One Health” approach. We collected 1567 pig- and 771 chicken-associated samples from animal farms, slaughterhouses, and retail markets. Of these samples, we identified 150 DEC isolates, with 73 (4.7 %) originating from pigs and 77 (10 %) from chickens. DEC risk of contamination in the final product (meat) was significantly higher in chickens (27.3 %) compared to pigs (0.5 %). In addition, carryover meat contamination was observed by clones originating from slaughterhouses in the chicken meat production chain. The resistance of chicken-associated isolates compared to pig-associated isolates to most antimicrobial agents was higher. Phylogenetic analysis following whole-genome sequencing of 150 DEC showed distinct lineages based on the host species, resulting in 20 clusters and 16 singletons. Multilocus sequence typing and serotyping revealed 25 and 30 different sequence types (STs) and serotypes, respectively. Human infection-related STs, including ST10 (11 %), ST23 (2.3 %), and ST48 (6.8 %), along with serotypes O89 (12.3 %), O26 (6.8 %), O103 (5.5 %), O121 (2.7 %), and O145 (2.7 %), were commonly detected in pig-associated isolates, emphasizing a zoonotic risk. Furthermore, the presence of various plasmids containing antimicrobial resistance and virulence genes was evident, posing a risk of spreading these genes to clinically important pathogens. Therefore, implementing effective control programs to reduce the prevalence of antimicrobial-resistant DEC in food production systems is important.</div></div>","PeriodicalId":14095,"journal":{"name":"International journal of food microbiology","volume":"431 ","pages":"Article 111085"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of food microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168160525000303","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Diarrheagenic Escherichia coli (DEC) is a serious public health threat. We investigated the distribution, antimicrobial resistance, and molecular characteristics of DEC in pork and chicken production chains following the “One Health” approach. We collected 1567 pig- and 771 chicken-associated samples from animal farms, slaughterhouses, and retail markets. Of these samples, we identified 150 DEC isolates, with 73 (4.7 %) originating from pigs and 77 (10 %) from chickens. DEC risk of contamination in the final product (meat) was significantly higher in chickens (27.3 %) compared to pigs (0.5 %). In addition, carryover meat contamination was observed by clones originating from slaughterhouses in the chicken meat production chain. The resistance of chicken-associated isolates compared to pig-associated isolates to most antimicrobial agents was higher. Phylogenetic analysis following whole-genome sequencing of 150 DEC showed distinct lineages based on the host species, resulting in 20 clusters and 16 singletons. Multilocus sequence typing and serotyping revealed 25 and 30 different sequence types (STs) and serotypes, respectively. Human infection-related STs, including ST10 (11 %), ST23 (2.3 %), and ST48 (6.8 %), along with serotypes O89 (12.3 %), O26 (6.8 %), O103 (5.5 %), O121 (2.7 %), and O145 (2.7 %), were commonly detected in pig-associated isolates, emphasizing a zoonotic risk. Furthermore, the presence of various plasmids containing antimicrobial resistance and virulence genes was evident, posing a risk of spreading these genes to clinically important pathogens. Therefore, implementing effective control programs to reduce the prevalence of antimicrobial-resistant DEC in food production systems is important.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International journal of food microbiology
International journal of food microbiology 工程技术-食品科技
CiteScore
10.40
自引率
5.60%
发文量
322
审稿时长
65 days
期刊介绍: The International Journal of Food Microbiology publishes papers dealing with all aspects of food microbiology. Articles must present information that is novel, has high impact and interest, and is of high scientific quality. They should provide scientific or technological advancement in the specific field of interest of the journal and enhance its strong international reputation. Preliminary or confirmatory results as well as contributions not strictly related to food microbiology will not be considered for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信