Numerical investigation on flow characteristics and working performance in oil-injected sliding vane rotary compressors

IF 3.5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Yuande Dai , Huiyang Zhu , Giuseppe Bianchi , Sham Rane , Fanghua Ye
{"title":"Numerical investigation on flow characteristics and working performance in oil-injected sliding vane rotary compressors","authors":"Yuande Dai ,&nbsp;Huiyang Zhu ,&nbsp;Giuseppe Bianchi ,&nbsp;Sham Rane ,&nbsp;Fanghua Ye","doi":"10.1016/j.ijrefrig.2025.01.018","DOIUrl":null,"url":null,"abstract":"<div><div>Oil is injected into Sliding Vane Rotary Compressors (SVRCs) for cooling, sealing and lubrication purposes. This paper presents numerical investigations on the oil-gas two-phase flow characteristics of the SVRC followed by studying the effects of the oil injection parameters on the compressor performance. The analytical grid generation methodology was employed to discretise the rotating and deforming rotor fluid domain. The Computational Fluid Dynamics (CFD) model of the SVRC was developed and validated with experimental test data. The flow topology was analyzed to illustrate the flow and oil distribution features within the compressor. Moreover, the influence of the oil injection parameters (oil to gas ratio, oil injection angle, oil injection temperature and rotational speed) on the compressor performance were explored. The results show that the oil accumulates at the leading sides of the blades and then flows into the blade tip region, which helps to reduce the internal leakage. In the reference case, the compressor achieves the volumetric efficiency of 95.1 %, the adiabatic efficiency of 60.3 %, the exhaust temperature of 337.4 K and the specific power of 9.86 kW/(m<sup>3</sup> min<sup>-1</sup>). Furthermore, increasing oil to gas ratio leads to better cooling and sealing performance, but also results in higher specific power. Oil to gas mass ratio has higher sensitivity than oil injection temperature or angle. About 8° shift in oil injection angle results in 4.2 % decrease in specific power. The lubricating oil capacity should be increased accordingly to the increasing rotational speed.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"171 ","pages":"Pages 202-216"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700725000180","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Oil is injected into Sliding Vane Rotary Compressors (SVRCs) for cooling, sealing and lubrication purposes. This paper presents numerical investigations on the oil-gas two-phase flow characteristics of the SVRC followed by studying the effects of the oil injection parameters on the compressor performance. The analytical grid generation methodology was employed to discretise the rotating and deforming rotor fluid domain. The Computational Fluid Dynamics (CFD) model of the SVRC was developed and validated with experimental test data. The flow topology was analyzed to illustrate the flow and oil distribution features within the compressor. Moreover, the influence of the oil injection parameters (oil to gas ratio, oil injection angle, oil injection temperature and rotational speed) on the compressor performance were explored. The results show that the oil accumulates at the leading sides of the blades and then flows into the blade tip region, which helps to reduce the internal leakage. In the reference case, the compressor achieves the volumetric efficiency of 95.1 %, the adiabatic efficiency of 60.3 %, the exhaust temperature of 337.4 K and the specific power of 9.86 kW/(m3 min-1). Furthermore, increasing oil to gas ratio leads to better cooling and sealing performance, but also results in higher specific power. Oil to gas mass ratio has higher sensitivity than oil injection temperature or angle. About 8° shift in oil injection angle results in 4.2 % decrease in specific power. The lubricating oil capacity should be increased accordingly to the increasing rotational speed.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
12.80%
发文量
363
审稿时长
3.7 months
期刊介绍: The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling. As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews. Papers are published in either English or French with the IIR news section in both languages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信