Fracture initiation and propagation in soft hydraulic fracturing of hot dry rock

IF 7 Q1 ENERGY & FUELS
Xiaoxia ZHOU, Gensheng LI, Zhengchao MA, Zhongwei HUANG, Xu ZHANG, Shouceng TIAN, Wenchao ZOU, Tianyu WANG
{"title":"Fracture initiation and propagation in soft hydraulic fracturing of hot dry rock","authors":"Xiaoxia ZHOU,&nbsp;Gensheng LI,&nbsp;Zhengchao MA,&nbsp;Zhongwei HUANG,&nbsp;Xu ZHANG,&nbsp;Shouceng TIAN,&nbsp;Wenchao ZOU,&nbsp;Tianyu WANG","doi":"10.1016/S1876-3804(25)60563-5","DOIUrl":null,"url":null,"abstract":"<div><div>By considering the thermo poroelastic effects of rock, the constitutive relationship of fatigue deterioration of rock under cyclic loading, elastic-brittle failure criteria and wellbore stress superposition effects, a thermal-hydraulic-mechanical- fatigue damage coupled model for fracture propagation during soft hydraulic fracturing in hot dry rock (HDR) was established and validated. Based on this model, numerical simulations were conducted to investigate the fracture initiation and propagation characteristics in HDR under the combined effects of different temperatures and cyclic loading. The results are obtained in three aspects. First, cyclic injection, fluid infiltration, pore pressure accumulation, and rock strength deterioration collectively induce fatigue damage of rocks during soft hydraulic fracturing. Second, the fracture propagation pattern of soft hydraulic fracturing in HDR is jointly controlled by temperature difference and cyclic loading. A larger temperature difference generates stronger thermal stress, facilitating the formation of complex fracture networks. As cyclic loading decreases, the influence range of thermal stress expands. When the cyclic loading is 90%<em>p</em><sub>b</sub> and 80%<em>p</em><sub>b</sub> (where <em>p</em><sub>b</sub> is the breakdown pressure during conventional hydraulic fracturing), the stimulated reservoir area increases by 88.33% and 120%, respectively, compared to conventional hydraulic fracturing (with an injection temperature of 25 °C). Third, as cyclic loading is further reduced, the reservoir stimulation efficiency diminishes. When the cyclic loading decreases to 70%<em>p</em><sub>b</sub>, the fluid pressure far away from the wellbore cannot reach the minimum breakdown pressure of the rock, resulting in no macroscopic hydraulic fractures.</div></div>","PeriodicalId":67426,"journal":{"name":"Petroleum Exploration and Development","volume":"51 6","pages":"Pages 1598-1610"},"PeriodicalIF":7.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Exploration and Development","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876380425605635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

By considering the thermo poroelastic effects of rock, the constitutive relationship of fatigue deterioration of rock under cyclic loading, elastic-brittle failure criteria and wellbore stress superposition effects, a thermal-hydraulic-mechanical- fatigue damage coupled model for fracture propagation during soft hydraulic fracturing in hot dry rock (HDR) was established and validated. Based on this model, numerical simulations were conducted to investigate the fracture initiation and propagation characteristics in HDR under the combined effects of different temperatures and cyclic loading. The results are obtained in three aspects. First, cyclic injection, fluid infiltration, pore pressure accumulation, and rock strength deterioration collectively induce fatigue damage of rocks during soft hydraulic fracturing. Second, the fracture propagation pattern of soft hydraulic fracturing in HDR is jointly controlled by temperature difference and cyclic loading. A larger temperature difference generates stronger thermal stress, facilitating the formation of complex fracture networks. As cyclic loading decreases, the influence range of thermal stress expands. When the cyclic loading is 90%pb and 80%pb (where pb is the breakdown pressure during conventional hydraulic fracturing), the stimulated reservoir area increases by 88.33% and 120%, respectively, compared to conventional hydraulic fracturing (with an injection temperature of 25 °C). Third, as cyclic loading is further reduced, the reservoir stimulation efficiency diminishes. When the cyclic loading decreases to 70%pb, the fluid pressure far away from the wellbore cannot reach the minimum breakdown pressure of the rock, resulting in no macroscopic hydraulic fractures.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.50
自引率
0.00%
发文量
473
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信