Genome-wide characterization of cysteine-rich receptor-like kinase (CRK) gene family in rice and OsCRK26 functional analysis in response to drought stress

IF 6.8 Q1 PLANT SCIENCES
Qing Yu , Yunchao Zhang , Tingyou Liu , Lei Wang , Yi Liu , Shunwu Yu , Xinqiao Yu , Hui Xia , Zhigang Liao , Lijun Luo
{"title":"Genome-wide characterization of cysteine-rich receptor-like kinase (CRK) gene family in rice and OsCRK26 functional analysis in response to drought stress","authors":"Qing Yu ,&nbsp;Yunchao Zhang ,&nbsp;Tingyou Liu ,&nbsp;Lei Wang ,&nbsp;Yi Liu ,&nbsp;Shunwu Yu ,&nbsp;Xinqiao Yu ,&nbsp;Hui Xia ,&nbsp;Zhigang Liao ,&nbsp;Lijun Luo","doi":"10.1016/j.stress.2024.100733","DOIUrl":null,"url":null,"abstract":"<div><div>Cysteine-rich receptor-like kinases (CRKs) are a major subfamily of receptor-like protein kinases, crucial for plant immunity and adaptation to environmental stresses. However, their comprehensive characterization in rice remains limited. In this study, we aimed to systematically characterize the <em>OsCRK</em> gene family in rice and elucidate their roles in stress responses. We identified 73 putative <em>OsCRK</em> members and categorized them into three subfamilies based on phylogenetic relationships. Cis-regulatory element analysis indicated that <em>OsCRKs</em> are associated with stress responses. qRT-PCR validation of six <em>OsCRK</em> genes showed their responsiveness to PEG6000 treatment, revealing significant repression of <em>OsCRK26</em> by PEG6000 and abscisic acid treatment. Subcellular localization studies showed that OsCRK26 is localized to the endoplasmic reticulum. Functional analysis revealed that loss-of-function mutations in <em>OsCRK26</em> led to reduced stomatal closure and increased water loss compared to wild type plants, resulting in heightened sensitivity to drought stress. Additionally, we found that OsCRK26 interacts with DCA1, a transcriptional co-activator involved in stomatal regulation. These findings provide a comprehensive understanding of the <em>OsCRK</em> gene family's function and highlight <em>OsCRK26</em> as a promising candidate for improving drought resistance in rice.</div></div>","PeriodicalId":34736,"journal":{"name":"Plant Stress","volume":"15 ","pages":"Article 100733"},"PeriodicalIF":6.8000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Stress","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667064X24003865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cysteine-rich receptor-like kinases (CRKs) are a major subfamily of receptor-like protein kinases, crucial for plant immunity and adaptation to environmental stresses. However, their comprehensive characterization in rice remains limited. In this study, we aimed to systematically characterize the OsCRK gene family in rice and elucidate their roles in stress responses. We identified 73 putative OsCRK members and categorized them into three subfamilies based on phylogenetic relationships. Cis-regulatory element analysis indicated that OsCRKs are associated with stress responses. qRT-PCR validation of six OsCRK genes showed their responsiveness to PEG6000 treatment, revealing significant repression of OsCRK26 by PEG6000 and abscisic acid treatment. Subcellular localization studies showed that OsCRK26 is localized to the endoplasmic reticulum. Functional analysis revealed that loss-of-function mutations in OsCRK26 led to reduced stomatal closure and increased water loss compared to wild type plants, resulting in heightened sensitivity to drought stress. Additionally, we found that OsCRK26 interacts with DCA1, a transcriptional co-activator involved in stomatal regulation. These findings provide a comprehensive understanding of the OsCRK gene family's function and highlight OsCRK26 as a promising candidate for improving drought resistance in rice.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Stress
Plant Stress PLANT SCIENCES-
CiteScore
5.20
自引率
8.00%
发文量
76
审稿时长
63 days
期刊介绍: The journal Plant Stress deals with plant (or other photoautotrophs, such as algae, cyanobacteria and lichens) responses to abiotic and biotic stress factors that can result in limited growth and productivity. Such responses can be analyzed and described at a physiological, biochemical and molecular level. Experimental approaches/technologies aiming to improve growth and productivity with a potential for downstream validation under stress conditions will also be considered. Both fundamental and applied research manuscripts are welcome, provided that clear mechanistic hypotheses are made and descriptive approaches are avoided. In addition, high-quality review articles will also be considered, provided they follow a critical approach and stimulate thought for future research avenues. Plant Stress welcomes high-quality manuscripts related (but not limited) to interactions between plants and: Lack of water (drought) and excess (flooding), Salinity stress, Elevated temperature and/or low temperature (chilling and freezing), Hypoxia and/or anoxia, Mineral nutrient excess and/or deficiency, Heavy metals and/or metalloids, Plant priming (chemical, biological, physiological, nanomaterial, biostimulant) approaches for improved stress protection, Viral, phytoplasma, bacterial and fungal plant-pathogen interactions. The journal welcomes basic and applied research articles, as well as review articles and short communications. All submitted manuscripts will be subject to a thorough peer-reviewing process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信