Fabrication of ultra-thin porous titanium alloys by electron beam selective melting: Porosity and mechanical properties

IF 4.2 Q2 ENGINEERING, MANUFACTURING
Jinhu Liu , Feihong Wang , Dong Lu , Yongfeng Liang , Junpin Lin
{"title":"Fabrication of ultra-thin porous titanium alloys by electron beam selective melting: Porosity and mechanical properties","authors":"Jinhu Liu ,&nbsp;Feihong Wang ,&nbsp;Dong Lu ,&nbsp;Yongfeng Liang ,&nbsp;Junpin Lin","doi":"10.1016/j.addlet.2025.100268","DOIUrl":null,"url":null,"abstract":"<div><div>Titanium alloys are widely regarded as ideal biomaterials due to their superior mechanical properties and resistance to corrosion. Additive manufacturing offers a novel approach for fabricating porous structures, enabling the production of titanium alloys with intricate geometries and varied dimensions. In this study, porous titanium alloys were produced using the Ti-6Al-2Zr-2V-1Mo alloy via electron beam selective melting (EBSM). Thin-wall structures with thicknesses ranging from 360 μm to 600 μm demonstrated exceptional mechanical performance near the forming threshold. An increase in porosity from 22 % to 32 % was observed, resulting in a reduction in tensile strength from 350 MPa to 250 MPa. Tensile testing and microstructural analyses revealed that precise control of the electron beam spot diameter facilitated effective metallurgical bonding between powder particles, with residual pores comparable in size to the original powder. This work highlights a promising strategy for fabricating titanium alloys tailored for biomedical applications.</div></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"13 ","pages":"Article 100268"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772369025000027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Titanium alloys are widely regarded as ideal biomaterials due to their superior mechanical properties and resistance to corrosion. Additive manufacturing offers a novel approach for fabricating porous structures, enabling the production of titanium alloys with intricate geometries and varied dimensions. In this study, porous titanium alloys were produced using the Ti-6Al-2Zr-2V-1Mo alloy via electron beam selective melting (EBSM). Thin-wall structures with thicknesses ranging from 360 μm to 600 μm demonstrated exceptional mechanical performance near the forming threshold. An increase in porosity from 22 % to 32 % was observed, resulting in a reduction in tensile strength from 350 MPa to 250 MPa. Tensile testing and microstructural analyses revealed that precise control of the electron beam spot diameter facilitated effective metallurgical bonding between powder particles, with residual pores comparable in size to the original powder. This work highlights a promising strategy for fabricating titanium alloys tailored for biomedical applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Additive manufacturing letters
Additive manufacturing letters Materials Science (General), Industrial and Manufacturing Engineering, Mechanics of Materials
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
37 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信