Fabrication of ultra-thin porous titanium alloys by electron beam selective melting: Porosity and mechanical properties

IF 4.2 Q2 ENGINEERING, MANUFACTURING
Jinhu Liu , Feihong Wang , Dong Lu , Yongfeng Liang , Junpin Lin
{"title":"Fabrication of ultra-thin porous titanium alloys by electron beam selective melting: Porosity and mechanical properties","authors":"Jinhu Liu ,&nbsp;Feihong Wang ,&nbsp;Dong Lu ,&nbsp;Yongfeng Liang ,&nbsp;Junpin Lin","doi":"10.1016/j.addlet.2025.100268","DOIUrl":null,"url":null,"abstract":"<div><div>Titanium alloys are widely regarded as ideal biomaterials due to their superior mechanical properties and resistance to corrosion. Additive manufacturing offers a novel approach for fabricating porous structures, enabling the production of titanium alloys with intricate geometries and varied dimensions. In this study, porous titanium alloys were produced using the Ti-6Al-2Zr-2V-1Mo alloy via electron beam selective melting (EBSM). Thin-wall structures with thicknesses ranging from 360 μm to 600 μm demonstrated exceptional mechanical performance near the forming threshold. An increase in porosity from 22 % to 32 % was observed, resulting in a reduction in tensile strength from 350 MPa to 250 MPa. Tensile testing and microstructural analyses revealed that precise control of the electron beam spot diameter facilitated effective metallurgical bonding between powder particles, with residual pores comparable in size to the original powder. This work highlights a promising strategy for fabricating titanium alloys tailored for biomedical applications.</div></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"13 ","pages":"Article 100268"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772369025000027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Titanium alloys are widely regarded as ideal biomaterials due to their superior mechanical properties and resistance to corrosion. Additive manufacturing offers a novel approach for fabricating porous structures, enabling the production of titanium alloys with intricate geometries and varied dimensions. In this study, porous titanium alloys were produced using the Ti-6Al-2Zr-2V-1Mo alloy via electron beam selective melting (EBSM). Thin-wall structures with thicknesses ranging from 360 μm to 600 μm demonstrated exceptional mechanical performance near the forming threshold. An increase in porosity from 22 % to 32 % was observed, resulting in a reduction in tensile strength from 350 MPa to 250 MPa. Tensile testing and microstructural analyses revealed that precise control of the electron beam spot diameter facilitated effective metallurgical bonding between powder particles, with residual pores comparable in size to the original powder. This work highlights a promising strategy for fabricating titanium alloys tailored for biomedical applications.
电子束选择性熔炼制备超薄多孔钛合金:孔隙率和力学性能
钛合金因其优异的力学性能和耐腐蚀性能而被广泛认为是理想的生物材料。增材制造为制造多孔结构提供了一种新的方法,使生产具有复杂几何形状和不同尺寸的钛合金成为可能。以Ti-6Al-2Zr-2V-1Mo合金为原料,采用电子束选择性熔炼法制备多孔钛合金。厚度为360 ~ 600 μm的薄壁结构在成形阈值附近表现出优异的力学性能。观察到孔隙率从22%增加到32%,导致抗拉强度从350mpa降低到250mpa。拉伸测试和显微组织分析表明,精确控制电子束光斑直径有助于粉末颗粒之间有效的冶金结合,残余孔隙的大小与原始粉末相当。这项工作强调了制造适合生物医学应用的钛合金的有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Additive manufacturing letters
Additive manufacturing letters Materials Science (General), Industrial and Manufacturing Engineering, Mechanics of Materials
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
37 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信