Modeling the thermal performance of hybrid paraffin-air nanostructure in a heat sink: Effect of atomic ratio of Al2O3 nanoparticles

Q1 Environmental Science
Wed khalid Ghanim , Rassol Hamed Rasheed , Ahmed Shawqi Sadeq , Mohammad N. Fares , Soheil Salahshour , Rozbeh Sabetvand
{"title":"Modeling the thermal performance of hybrid paraffin-air nanostructure in a heat sink: Effect of atomic ratio of Al2O3 nanoparticles","authors":"Wed khalid Ghanim ,&nbsp;Rassol Hamed Rasheed ,&nbsp;Ahmed Shawqi Sadeq ,&nbsp;Mohammad N. Fares ,&nbsp;Soheil Salahshour ,&nbsp;Rozbeh Sabetvand","doi":"10.1016/j.cscee.2025.101109","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the effect of varying atomic ratios (1 %, 3 %, 6 %, and 10 %) of Al₂O₃ nanoparticles on the thermal performance of a hybrid paraffin-air nanostructure in a heat sink, using molecular dynamics simulations. The primary objective is to enhance the thermal properties of phase change materials for efficient energy storage, which is crucial for advancing thermal management systems. The purpose is to optimize nanoparticle concentration and assess how altering the atomic ratio of Al₂O₃ nanoparticles can improve thermal conductivity and heat flux within the phase change material matrix. The results demonstrate that after reaching equilibrium within 20 ns, the total energy of the atomic sample converges to −5990.70 eV, indicating stable atomic oscillations. Notably, increasing Al₂O₃ nanoparticle concentration to 3 % significantly improves the heat flux and thermal conductivity, reaching values of 354.11 W/m<sup>2</sup> and 405.42 W/m·K, respectively. The radial distribution function analysis shows a decrease in the maximum peak to 3.49 at the 3 % concentration, suggesting that a higher concentration of oxygen atoms in the material could enhance thermal performance. Furthermore, the maximum temperature within the system increases to 934.17 K at the 3 % atomic ratio. The aggregation time at this concentration is 8.11 ns, which decreases to 6.83 ns at a 10 % atomic ratio, further supporting the detrimental impact of nanoparticle aggregation. Notably, a 3 % concentration is found to be optimal for improving performance. These findings show the critical role of Al₂O₃ nanoparticles in enhancing the thermal performance of phase change material-based systems, offering valuable insights into optimal nanoparticle concentration and aggregation for effective thermal management in energy storage applications.</div></div>","PeriodicalId":34388,"journal":{"name":"Case Studies in Chemical and Environmental Engineering","volume":"11 ","pages":"Article 101109"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Chemical and Environmental Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666016425000167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the effect of varying atomic ratios (1 %, 3 %, 6 %, and 10 %) of Al₂O₃ nanoparticles on the thermal performance of a hybrid paraffin-air nanostructure in a heat sink, using molecular dynamics simulations. The primary objective is to enhance the thermal properties of phase change materials for efficient energy storage, which is crucial for advancing thermal management systems. The purpose is to optimize nanoparticle concentration and assess how altering the atomic ratio of Al₂O₃ nanoparticles can improve thermal conductivity and heat flux within the phase change material matrix. The results demonstrate that after reaching equilibrium within 20 ns, the total energy of the atomic sample converges to −5990.70 eV, indicating stable atomic oscillations. Notably, increasing Al₂O₃ nanoparticle concentration to 3 % significantly improves the heat flux and thermal conductivity, reaching values of 354.11 W/m2 and 405.42 W/m·K, respectively. The radial distribution function analysis shows a decrease in the maximum peak to 3.49 at the 3 % concentration, suggesting that a higher concentration of oxygen atoms in the material could enhance thermal performance. Furthermore, the maximum temperature within the system increases to 934.17 K at the 3 % atomic ratio. The aggregation time at this concentration is 8.11 ns, which decreases to 6.83 ns at a 10 % atomic ratio, further supporting the detrimental impact of nanoparticle aggregation. Notably, a 3 % concentration is found to be optimal for improving performance. These findings show the critical role of Al₂O₃ nanoparticles in enhancing the thermal performance of phase change material-based systems, offering valuable insights into optimal nanoparticle concentration and aggregation for effective thermal management in energy storage applications.
热沉中石蜡-空气杂化纳米结构的热性能模拟:Al2O3纳米粒子原子比的影响
本研究利用分子动力学模拟研究了不同原子比(1%、3%、6%和10%)的Al₂O₃纳米颗粒对热沉中石蜡-空气杂化纳米结构热性能的影响。主要目标是提高相变材料的热性能,以实现高效的能量存储,这对于推进热管理系统至关重要。目的是优化纳米颗粒浓度,并评估改变Al₂O₃纳米颗粒的原子比如何改善相变材料基体内的导热性和热流密度。结果表明,在20 ns内达到平衡后,原子样品的总能量收敛到- 5990.70 eV,表明原子振荡稳定。值得注意的是,将Al₂O₃纳米颗粒浓度增加到3%,可以显著提高热流密度和导热系数,分别达到354.11 W/m2和405.42 W/m·K。径向分布函数分析表明,当氧浓度为3%时,最大峰减小至3.49,表明材料中氧原子浓度越高,热性能越好。当原子比为3%时,体系内最高温度达到934.17 K。在此浓度下,纳米粒子的聚集时间为8.11 ns,当原子比为10%时,聚集时间缩短至6.83 ns,进一步支持了纳米粒子聚集的有害影响。值得注意的是,发现3%的浓度对提高性能是最佳的。这些发现表明了Al₂O₃纳米颗粒在增强相变材料基系统的热性能方面的关键作用,为储能应用中有效热管理的最佳纳米颗粒浓度和聚集提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Case Studies in Chemical and Environmental Engineering
Case Studies in Chemical and Environmental Engineering Engineering-Engineering (miscellaneous)
CiteScore
9.20
自引率
0.00%
发文量
103
审稿时长
40 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信