Photocatalytic improvement mechanism of SnO2/Sn-doped g-C3N4 Z-type heterojunctions for visible-irradiation-based destruction of organic pollutants: Experimental and RSM approaches

Q1 Environmental Science
Yossor R. Abdulmajeed , Saad H. Ammar , Zaid H. Jabbar , Hind J. Hadi , Mohammed D. Salman , Alaa Jasim Awadh
{"title":"Photocatalytic improvement mechanism of SnO2/Sn-doped g-C3N4 Z-type heterojunctions for visible-irradiation-based destruction of organic pollutants: Experimental and RSM approaches","authors":"Yossor R. Abdulmajeed ,&nbsp;Saad H. Ammar ,&nbsp;Zaid H. Jabbar ,&nbsp;Hind J. Hadi ,&nbsp;Mohammed D. Salman ,&nbsp;Alaa Jasim Awadh","doi":"10.1016/j.cscee.2025.101096","DOIUrl":null,"url":null,"abstract":"<div><div>This work investigated the possibility of applying SnO<sub>2</sub>/Sn-doped g-C<sub>3</sub>N<sub>4</sub> hybrid as an efficient photocatalyst for visible light-based degradation of ibuprofen (IBP). Response surface methodology (RSM) has been adopted to optimize the IBP photodegradation. The conditions were initially fixed at photocatalyst dose = 0.2 g/L, Solution pH = 7, and IBP concentration = 10 mg/L in order to assess the SnO<sub>2</sub>/Sn-doped g-C<sub>3</sub>N<sub>4</sub> activity, which exhibited 91 % IBP destruction after 90 min. Then, the process variables (IBP concentration, pH, and photocatalyst dose) were adjusted based on the Box-Behnken Design (BBD). The experimental IBP photodegradation was exceedingly correlated with that value predicted by the obtained quadratic model (R<sup>2</sup> = 0.993, F-value = 79.19, and P-value &lt;0.0001). The IBP photodegradation tests exhibited that the SnO<sub>2</sub>/Sn-doped g-C<sub>3</sub>N<sub>4</sub> dose of 0.6 g/L, solution pH of 11, and IBP concentration of 10 mg/L were the optimal values. The photocatalyst dose was specified as the major factor in the process. The boosted photoactivity was due to the created Z-type heterojunction among SnO<sub>2</sub> and Sn-doped g-C<sub>3</sub>N<sub>4</sub>, which provides an excellent separation of photogenerated charge-carriers. Accordingly, we explored the reaction mechanism in light of trapping studies. Besides, the stability of SnO<sub>2</sub>/Sn-doped g-C<sub>3</sub>N<sub>4</sub> hybrid photocatalyst was tested.</div></div>","PeriodicalId":34388,"journal":{"name":"Case Studies in Chemical and Environmental Engineering","volume":"11 ","pages":"Article 101096"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Chemical and Environmental Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666016425000039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

This work investigated the possibility of applying SnO2/Sn-doped g-C3N4 hybrid as an efficient photocatalyst for visible light-based degradation of ibuprofen (IBP). Response surface methodology (RSM) has been adopted to optimize the IBP photodegradation. The conditions were initially fixed at photocatalyst dose = 0.2 g/L, Solution pH = 7, and IBP concentration = 10 mg/L in order to assess the SnO2/Sn-doped g-C3N4 activity, which exhibited 91 % IBP destruction after 90 min. Then, the process variables (IBP concentration, pH, and photocatalyst dose) were adjusted based on the Box-Behnken Design (BBD). The experimental IBP photodegradation was exceedingly correlated with that value predicted by the obtained quadratic model (R2 = 0.993, F-value = 79.19, and P-value <0.0001). The IBP photodegradation tests exhibited that the SnO2/Sn-doped g-C3N4 dose of 0.6 g/L, solution pH of 11, and IBP concentration of 10 mg/L were the optimal values. The photocatalyst dose was specified as the major factor in the process. The boosted photoactivity was due to the created Z-type heterojunction among SnO2 and Sn-doped g-C3N4, which provides an excellent separation of photogenerated charge-carriers. Accordingly, we explored the reaction mechanism in light of trapping studies. Besides, the stability of SnO2/Sn-doped g-C3N4 hybrid photocatalyst was tested.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Case Studies in Chemical and Environmental Engineering
Case Studies in Chemical and Environmental Engineering Engineering-Engineering (miscellaneous)
CiteScore
9.20
自引率
0.00%
发文量
103
审稿时长
40 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信