Impact of synthesized Zero-valance silver nanoparticles on acetylcholinesterase and xanthine oxidase: Toxicological and environmental implications

Q1 Environmental Science
Srwa Hashim Mohammed , Ahmed Mahdi Rheima , Dhiey A. Al-aameri , Haider Kamil Zaidan , Zainab T. Al-Sharify
{"title":"Impact of synthesized Zero-valance silver nanoparticles on acetylcholinesterase and xanthine oxidase: Toxicological and environmental implications","authors":"Srwa Hashim Mohammed ,&nbsp;Ahmed Mahdi Rheima ,&nbsp;Dhiey A. Al-aameri ,&nbsp;Haider Kamil Zaidan ,&nbsp;Zainab T. Al-Sharify","doi":"10.1016/j.cscee.2025.101095","DOIUrl":null,"url":null,"abstract":"<div><div>Nanoparticles have several applications in commercial and pharmaceutical products owing to their exceptional antibacterial characteristics. Nonetheless, the extensive creation of nanoparticles has significant concerns regarding their toxicological and environmental effects. Acetylcholinesterase (AChE) and xanthine oxidase (XO) are important enzymes in neuroscience, toxicology, and pharmacology, which makes them good targets for studying how nanoparticles affect these areas. This study involved the synthesis of spherical silver nanoparticles (AgNPs) using ultraviolet (UV) irradiation and their subsequent characterization regarding structural and optical properties. The synthesizer technique utilized X-ray diffraction (XRD) and transmission electron microscopy (TEM) to ascertain the form and size of the nanoparticles, indicating an average diameter of approximately 20.23 nm. An enzymatic test evaluated the inhibitory effects of the synthesized Ag NPs on AChE and XO, using donepezil and allopurinol as positive controls. The results demonstrated that the Ag NPs displayed minimal enzyme inhibitory activity relative to the positive controls. This work underscores the necessity for additional research on the effects of nanoparticle interactions with essential biological systems.</div></div>","PeriodicalId":34388,"journal":{"name":"Case Studies in Chemical and Environmental Engineering","volume":"11 ","pages":"Article 101095"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Chemical and Environmental Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666016425000027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Nanoparticles have several applications in commercial and pharmaceutical products owing to their exceptional antibacterial characteristics. Nonetheless, the extensive creation of nanoparticles has significant concerns regarding their toxicological and environmental effects. Acetylcholinesterase (AChE) and xanthine oxidase (XO) are important enzymes in neuroscience, toxicology, and pharmacology, which makes them good targets for studying how nanoparticles affect these areas. This study involved the synthesis of spherical silver nanoparticles (AgNPs) using ultraviolet (UV) irradiation and their subsequent characterization regarding structural and optical properties. The synthesizer technique utilized X-ray diffraction (XRD) and transmission electron microscopy (TEM) to ascertain the form and size of the nanoparticles, indicating an average diameter of approximately 20.23 nm. An enzymatic test evaluated the inhibitory effects of the synthesized Ag NPs on AChE and XO, using donepezil and allopurinol as positive controls. The results demonstrated that the Ag NPs displayed minimal enzyme inhibitory activity relative to the positive controls. This work underscores the necessity for additional research on the effects of nanoparticle interactions with essential biological systems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Case Studies in Chemical and Environmental Engineering
Case Studies in Chemical and Environmental Engineering Engineering-Engineering (miscellaneous)
CiteScore
9.20
自引率
0.00%
发文量
103
审稿时长
40 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信