Numerical analysis of far-field fault reactivation induced by reservoir cooling

IF 3.5 2区 工程技术 Q3 ENERGY & FUELS
Josselin Ouf , Philip J. Vardon , Kavan Khaledi , Wen Luo , Mohammadreza Jalali , Florian Amann
{"title":"Numerical analysis of far-field fault reactivation induced by reservoir cooling","authors":"Josselin Ouf ,&nbsp;Philip J. Vardon ,&nbsp;Kavan Khaledi ,&nbsp;Wen Luo ,&nbsp;Mohammadreza Jalali ,&nbsp;Florian Amann","doi":"10.1016/j.geothermics.2024.103234","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a thermo-hydro-mechanical framework to model hydrothermal systems within a simplified faulted synthetic reservoir, replicating current production scenarios in The Netherlands and Germany. The reservoir, composed of porous and permeable sandstone, and the confining layer, made of porous but less permeable shale, undergoes a process where cold water is injected and hot water is extracted. A fault, situated 750 meters from the injection well, is investigated to examine the conditions when fault slip could occur. Various fault and formation stiffnesses are modeled to assess their impact on fault stability. Our analysis reveals that stress changes induced by hydrothermal operations can lead to fault reactivation, with the stiffness contrast between the reservoir and confining layers playing a significant role in when and where fault reactivation can occur. Stiffer confining layers lead to reactivation occurring more closely associated with the passage of the cooling front. In contrast, a stiffer reservoir results in greater and more gradual stress changes, making reactivation more closely related to the total volume of cooled rock.</div></div>","PeriodicalId":55095,"journal":{"name":"Geothermics","volume":"127 ","pages":"Article 103234"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375650524003201","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a thermo-hydro-mechanical framework to model hydrothermal systems within a simplified faulted synthetic reservoir, replicating current production scenarios in The Netherlands and Germany. The reservoir, composed of porous and permeable sandstone, and the confining layer, made of porous but less permeable shale, undergoes a process where cold water is injected and hot water is extracted. A fault, situated 750 meters from the injection well, is investigated to examine the conditions when fault slip could occur. Various fault and formation stiffnesses are modeled to assess their impact on fault stability. Our analysis reveals that stress changes induced by hydrothermal operations can lead to fault reactivation, with the stiffness contrast between the reservoir and confining layers playing a significant role in when and where fault reactivation can occur. Stiffer confining layers lead to reactivation occurring more closely associated with the passage of the cooling front. In contrast, a stiffer reservoir results in greater and more gradual stress changes, making reactivation more closely related to the total volume of cooled rock.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geothermics
Geothermics 工程技术-地球科学综合
CiteScore
7.70
自引率
15.40%
发文量
237
审稿时长
4.5 months
期刊介绍: Geothermics is an international journal devoted to the research and development of geothermal energy. The International Board of Editors of Geothermics, which comprises specialists in the various aspects of geothermal resources, exploration and development, guarantees the balanced, comprehensive view of scientific and technological developments in this promising energy field. It promulgates the state of the art and science of geothermal energy, its exploration and exploitation through a regular exchange of information from all parts of the world. The journal publishes articles dealing with the theory, exploration techniques and all aspects of the utilization of geothermal resources. Geothermics serves as the scientific house, or exchange medium, through which the growing community of geothermal specialists can provide and receive information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信