Innovation in obtaining bacterial nanocellulose from banana rachis: Effects of ozone treatment

Q1 Environmental Science
Manuel Fiallos-Cardenas , Cesar Gavin , Kevin Huilcarema-Enríquez , Anita Cumbicus-Bravo , Francisco Pozo
{"title":"Innovation in obtaining bacterial nanocellulose from banana rachis: Effects of ozone treatment","authors":"Manuel Fiallos-Cardenas ,&nbsp;Cesar Gavin ,&nbsp;Kevin Huilcarema-Enríquez ,&nbsp;Anita Cumbicus-Bravo ,&nbsp;Francisco Pozo","doi":"10.1016/j.cscee.2024.101044","DOIUrl":null,"url":null,"abstract":"<div><div>The production of bananas generates considerable waste, including rachis, which can negatively impact the environment if not managed effectively. This study explores the potential of valorizing banana rachis, currently discarded, to produce bacterial nanocellulose (BNC), a bioproduct with applications in the textile, food, and cosmetic industries. The objective is to investigate the effect of different ozone treatment times (0, 5, 20, and 30 minutes) on the physicochemical properties of banana rachis juice (BRJ). The selected variables—dissolved oxygen, oxygen saturation, salinity, total dissolved solids, electrical conductivity, pH, turbidity, °Brix, and electrical resistance—are critical for influencing microbial growth and fermentation efficiency, essential for BNC production. The influence of varying BRJ concentrations (25 %, 50 %, and 75 %) and ozonation times on these properties and BNC yield was assessed. The BNC obtained from ozonated BRJ was characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). Results indicated that the physicochemical properties of the BNC were consistent with those produced by the Hestrin-Schramm (HS) method, validating the reproducibility of these characteristics. A 25 % BRJ concentration treated with ozone for 20 minutes yielded approximately 0.88 g of dry BNC per liter after seven days of fermentation. This study provides an innovative solution for valorizing agro-industrial waste and suggests more sustainable waste management methods, with significant implications for both industry and the environment.</div></div>","PeriodicalId":34388,"journal":{"name":"Case Studies in Chemical and Environmental Engineering","volume":"11 ","pages":"Article 101044"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Chemical and Environmental Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666016424004389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

The production of bananas generates considerable waste, including rachis, which can negatively impact the environment if not managed effectively. This study explores the potential of valorizing banana rachis, currently discarded, to produce bacterial nanocellulose (BNC), a bioproduct with applications in the textile, food, and cosmetic industries. The objective is to investigate the effect of different ozone treatment times (0, 5, 20, and 30 minutes) on the physicochemical properties of banana rachis juice (BRJ). The selected variables—dissolved oxygen, oxygen saturation, salinity, total dissolved solids, electrical conductivity, pH, turbidity, °Brix, and electrical resistance—are critical for influencing microbial growth and fermentation efficiency, essential for BNC production. The influence of varying BRJ concentrations (25 %, 50 %, and 75 %) and ozonation times on these properties and BNC yield was assessed. The BNC obtained from ozonated BRJ was characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). Results indicated that the physicochemical properties of the BNC were consistent with those produced by the Hestrin-Schramm (HS) method, validating the reproducibility of these characteristics. A 25 % BRJ concentration treated with ozone for 20 minutes yielded approximately 0.88 g of dry BNC per liter after seven days of fermentation. This study provides an innovative solution for valorizing agro-industrial waste and suggests more sustainable waste management methods, with significant implications for both industry and the environment.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Case Studies in Chemical and Environmental Engineering
Case Studies in Chemical and Environmental Engineering Engineering-Engineering (miscellaneous)
CiteScore
9.20
自引率
0.00%
发文量
103
审稿时长
40 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信