Wanxin Liu , Shengjie Wang , Xiaoxin Zhang , Yanchang Liu , Bin Liang , Shilei Li
{"title":"Effects of yttrium addition on microstructure and mechanical property of Nb-1Zr-0.1C alloy","authors":"Wanxin Liu , Shengjie Wang , Xiaoxin Zhang , Yanchang Liu , Bin Liang , Shilei Li","doi":"10.1016/j.mlblux.2025.100239","DOIUrl":null,"url":null,"abstract":"<div><div>The effects of Y addition on microstructure and mechanical property of Nb-1Zr-0.1C alloy were investigated. Electron backscattered diffraction results show that no recrystallization was observed in the warm-rolled and annealed Nb-1Zr-0.1C alloys with different Y additions. In the cold-rolled and annealed Nb-1Zr-0.1C alloy with 0.1 % Y addition, Y<sub>2</sub>O<sub>3</sub> was continuously distributed along the grain boundaries of the Nb matrix that had undergone complete recrystallization. While as the Y addition increased to 0.4 %, Y<sub>2</sub>O<sub>3</sub> restored a granular distribution in the cold-rolled and annealed Nb-1Zr-0.1C alloy. The addition of Y element to the Nb-1Zr-0.1C alloy could enhance both the strength and plasticity to a certain extent. Compared with the as-cast and warm-rolled and annealed samples, the Nb-1Zr-0.1C alloy with different Y additions after cold-rolling and annealing exhibited a higher work hardening rate.</div></div>","PeriodicalId":18245,"journal":{"name":"Materials Letters: X","volume":"25 ","pages":"Article 100239"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259015082500002X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The effects of Y addition on microstructure and mechanical property of Nb-1Zr-0.1C alloy were investigated. Electron backscattered diffraction results show that no recrystallization was observed in the warm-rolled and annealed Nb-1Zr-0.1C alloys with different Y additions. In the cold-rolled and annealed Nb-1Zr-0.1C alloy with 0.1 % Y addition, Y2O3 was continuously distributed along the grain boundaries of the Nb matrix that had undergone complete recrystallization. While as the Y addition increased to 0.4 %, Y2O3 restored a granular distribution in the cold-rolled and annealed Nb-1Zr-0.1C alloy. The addition of Y element to the Nb-1Zr-0.1C alloy could enhance both the strength and plasticity to a certain extent. Compared with the as-cast and warm-rolled and annealed samples, the Nb-1Zr-0.1C alloy with different Y additions after cold-rolling and annealing exhibited a higher work hardening rate.