New higher-order super-compact scheme to study the uniform and non-uniform wall heating effect on 3D MHD natural convection and entropy generation

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ashwani Punia, Rajendra K. Ray
{"title":"New higher-order super-compact scheme to study the uniform and non-uniform wall heating effect on 3D MHD natural convection and entropy generation","authors":"Ashwani Punia,&nbsp;Rajendra K. Ray","doi":"10.1016/j.compfluid.2024.106538","DOIUrl":null,"url":null,"abstract":"<div><div>This research introduces a new higher-order super-compact (HOSC) finite difference scheme to study magnetohydrodynamic (MHD) natural convection within a 3D cubic cavity filled with molten lithium. The HOSC scheme, implemented for the first time in this context, provides an advanced analysis of the thermal behavior under various wall heating conditions, including uniform and non-uniform heating. The study comprehensively explores the effects of different Hartmann numbers (<span><math><mrow><mi>H</mi><mi>a</mi><mo>=</mo><mn>25</mn><mo>,</mo><mn>50</mn><mo>,</mo><mn>100</mn><mo>,</mo><mn>150</mn></mrow></math></span>) and Rayleigh numbers (<span><math><mrow><mi>R</mi><mi>a</mi><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup><mo>,</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span>), with a fixed Prandtl number (<span><math><mrow><mi>P</mi><mi>r</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>065</mn></mrow></math></span>) for molten lithium. Three distinct heating scenarios on the left wall (<span><math><mrow><mi>x</mi><mo>=</mo><mn>0</mn></mrow></math></span>) of the cubic cavity are investigated: uniform heating (<span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>θ</mi></mrow></msub><mo>=</mo><mn>1</mn></mrow></math></span>), <span><math><mi>y</mi></math></span>-dependent non-uniform heating (<span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>θ</mi></mrow></msub><mo>=</mo><mo>sin</mo><mrow><mo>(</mo><mi>π</mi><mi>y</mi><mo>)</mo></mrow></mrow></math></span>), and combined <span><math><mi>y</mi></math></span> and <span><math><mi>z</mi></math></span>-dependent non-uniform heating (<span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>θ</mi></mrow></msub><mo>=</mo><mo>sin</mo><mrow><mo>(</mo><mi>π</mi><mi>y</mi><mo>)</mo></mrow><mo>sin</mo><mrow><mo>(</mo><mi>π</mi><mi>z</mi><mo>)</mo></mrow></mrow></math></span>). The results show that the HOSC scheme effectively captures the impact of varying <span><math><mrow><mi>H</mi><mi>a</mi></mrow></math></span> and <span><math><mrow><mi>R</mi><mi>a</mi></mrow></math></span> on the temperature distribution and flow field, revealing that increased <span><math><mrow><mi>R</mi><mi>a</mi></mrow></math></span> enhances heat transfer due to stronger convection, while higher <span><math><mrow><mi>H</mi><mi>a</mi></mrow></math></span> reduces heat transfer by slowing fluid motion. Notably, as <span><math><mrow><mi>R</mi><mi>a</mi></mrow></math></span> increases from <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> to <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span> at a fixed <span><math><mrow><mi>H</mi><mi>a</mi><mo>=</mo><mn>25</mn></mrow></math></span>, the maximum Nusselt number (<span><math><mrow><mi>N</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>L</mi></mrow></msub></mrow></math></span>) experiences a remarkable 654.1% rise in Case 1, while Cases 2 and 3 show more moderate increases of 18.18% and 25.17%, respectively. The scenario in which walls are uniformly heated exhibits the most significant total entropy generation. As the <span><math><mrow><mi>R</mi><mi>a</mi></mrow></math></span> increases from <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> to <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span> with a constant <span><math><mrow><mi>H</mi><mi>a</mi><mo>=</mo><mn>25</mn></mrow></math></span>, the Bejan number (<span><math><mrow><mi>B</mi><mi>e</mi></mrow></math></span>) decreases by 86% in Case 1, 83% in Case 2, and 85% in Case 3. This study provides valuable insights that could help in optimizing and designing relevant engineering systems. The novelty of the work lies in the development and application of the new higher-order super-compact (HOSC) scheme, enabling a detailed analysis of the effects of various thermal boundary conditions on 3D MHD natural convection and entropy generation.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"289 ","pages":"Article 106538"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793024003694","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This research introduces a new higher-order super-compact (HOSC) finite difference scheme to study magnetohydrodynamic (MHD) natural convection within a 3D cubic cavity filled with molten lithium. The HOSC scheme, implemented for the first time in this context, provides an advanced analysis of the thermal behavior under various wall heating conditions, including uniform and non-uniform heating. The study comprehensively explores the effects of different Hartmann numbers (Ha=25,50,100,150) and Rayleigh numbers (Ra=103,104,105), with a fixed Prandtl number (Pr=0.065) for molten lithium. Three distinct heating scenarios on the left wall (x=0) of the cubic cavity are investigated: uniform heating (Tθ=1), y-dependent non-uniform heating (Tθ=sin(πy)), and combined y and z-dependent non-uniform heating (Tθ=sin(πy)sin(πz)). The results show that the HOSC scheme effectively captures the impact of varying Ha and Ra on the temperature distribution and flow field, revealing that increased Ra enhances heat transfer due to stronger convection, while higher Ha reduces heat transfer by slowing fluid motion. Notably, as Ra increases from 103 to 105 at a fixed Ha=25, the maximum Nusselt number (NuL) experiences a remarkable 654.1% rise in Case 1, while Cases 2 and 3 show more moderate increases of 18.18% and 25.17%, respectively. The scenario in which walls are uniformly heated exhibits the most significant total entropy generation. As the Ra increases from 103 to 105 with a constant Ha=25, the Bejan number (Be) decreases by 86% in Case 1, 83% in Case 2, and 85% in Case 3. This study provides valuable insights that could help in optimizing and designing relevant engineering systems. The novelty of the work lies in the development and application of the new higher-order super-compact (HOSC) scheme, enabling a detailed analysis of the effects of various thermal boundary conditions on 3D MHD natural convection and entropy generation.
研究均匀和非均匀壁面加热对三维MHD自然对流和熵产的影响的新高阶超紧凑方案
本研究引入了一种新的高阶超紧凑(HOSC)有限差分格式来研究充满熔融锂的三维立方腔内的磁流体动力学(MHD)自然对流。在此背景下首次实施的HOSC方案提供了对各种墙体加热条件下的热行为的高级分析,包括均匀加热和非均匀加热。在固定Prandtl数(Pr=0.065)的情况下,全面探讨了不同Hartmann数(Ha=25、50、100、150)和Rayleigh数(Ra=103,104,105)对熔融锂的影响。研究了立方腔左壁面(x=0)的三种不同加热情况:均匀加热(θ=1)、非均匀加热(θ=sin(π))、非均匀加热(θ=sin(π))和非均匀加热(θ=sin(π))。结果表明,HOSC方案有效地捕捉了Ha和Ra变化对温度分布和流场的影响,表明Ra的增加通过增强对流来增强换热,而Ha的增加通过减缓流体运动来降低换热。值得注意的是,当Ra从103增加到105时,在固定Ha=25时,Case 1的最大努塞尔数(NuL)增加了654.1%,而Case 2和Case 3的最大努塞尔数(NuL)分别增加了18.18%和25.17%。墙体均匀受热的情形显示出最显著的总熵生成。当Ra从103增加到105,Ha=25不变时,贝然数(Be)在情形1中下降86%,在情形2中下降83%,在情形3中下降85%。这项研究提供了有价值的见解,可以帮助优化和设计相关的工程系统。这项工作的新颖之处在于开发和应用了新的高阶超紧凑(HOSC)方案,可以详细分析各种热边界条件对三维MHD自然对流和熵生成的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信