A new temperature evolution equation that enforces thermodynamic vapour–liquid equilibrium in multiphase flows - application to CO2 modelling

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Pardeep Kumar , Benjamin Sanderse , Patricio I. Rosen Esquivel , R.A.W.M. Henkes
{"title":"A new temperature evolution equation that enforces thermodynamic vapour–liquid equilibrium in multiphase flows - application to CO2 modelling","authors":"Pardeep Kumar ,&nbsp;Benjamin Sanderse ,&nbsp;Patricio I. Rosen Esquivel ,&nbsp;R.A.W.M. Henkes","doi":"10.1016/j.compfluid.2024.106524","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents a novel framework for numerically simulating the depressurization of tanks and pipelines containing carbon dioxide (<span><math><mrow><mi>CO</mi><mn>2</mn></mrow></math></span>). The framework focuses on efficient solution strategies for the coupled system of fluid flow equations and thermodynamic constraints. A key contribution lies in proposing a new set of equations for phase equilibrium calculations which simplifies the traditional vapour–liquid equilibrium (VLE) calculations for two-phase <span><math><mrow><mi>CO</mi><mn>2</mn></mrow></math></span> mixtures. The first major novelty resides in the reduction of the conventional four-equation VLE system to a single equation, enabling efficient solution using a non-linear solver. This significantly reduces computational cost compared to traditional methods. Furthermore, a second novelty is introduced by deriving an ordinary differential equation (ODE) directly from the UV-Flash equation. This ODE can be integrated alongside the governing fluid flow equations, offering a computationally efficient approach for simulating depressurization processes.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"289 ","pages":"Article 106524"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793024003554","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a novel framework for numerically simulating the depressurization of tanks and pipelines containing carbon dioxide (CO2). The framework focuses on efficient solution strategies for the coupled system of fluid flow equations and thermodynamic constraints. A key contribution lies in proposing a new set of equations for phase equilibrium calculations which simplifies the traditional vapour–liquid equilibrium (VLE) calculations for two-phase CO2 mixtures. The first major novelty resides in the reduction of the conventional four-equation VLE system to a single equation, enabling efficient solution using a non-linear solver. This significantly reduces computational cost compared to traditional methods. Furthermore, a second novelty is introduced by deriving an ordinary differential equation (ODE) directly from the UV-Flash equation. This ODE can be integrated alongside the governing fluid flow equations, offering a computationally efficient approach for simulating depressurization processes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信