{"title":"Climbing loose surfaces with steep slopes using a small, lightweight push-rolling rover with minimal configuration","authors":"Daisuke Fujiwara , Qingze He , Kojiro Iizuka","doi":"10.1016/j.jterra.2024.101043","DOIUrl":null,"url":null,"abstract":"<div><div>Owing to the payload limitations, some organizations are focusing on small, lightweight wheeled rovers for planetary exploration. Planetary and lunar surfaces feature weak soils and slopes that pose mobility challenges for wheeled rovers. Studies have shown that push–pull locomotion can improve climbing ability. Such rovers lock one pair of wheels relative to the ground while driving the other like an inchworm. Conventional rovers have large masses ranging from 10 to nearly 1,000 kg. However, some studies are now focusing on small rovers of masses from under 1 kg to 20 kg. For such rovers, traveling on granular surfaces with steep slopes and low slips remains an experimental challenge. This study develops a small, lightweight push-rolling rover and evaluates its ability to climb steep slopes. To meet size requirements, the rover uses a minimal configuration. Experiments to measure resistance and drawbar pull forces during push-rolling revealed that a lugged wheel and dynamic sinking behavior using an intentional slip increased the total thrust forces. Additionally, travel experiments showed that the developed rover, with its optimal configuration, demonstrated a high climbing ability on slopes greater than 30°.</div></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"118 ","pages":"Article 101043"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Terramechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022489824000855","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Owing to the payload limitations, some organizations are focusing on small, lightweight wheeled rovers for planetary exploration. Planetary and lunar surfaces feature weak soils and slopes that pose mobility challenges for wheeled rovers. Studies have shown that push–pull locomotion can improve climbing ability. Such rovers lock one pair of wheels relative to the ground while driving the other like an inchworm. Conventional rovers have large masses ranging from 10 to nearly 1,000 kg. However, some studies are now focusing on small rovers of masses from under 1 kg to 20 kg. For such rovers, traveling on granular surfaces with steep slopes and low slips remains an experimental challenge. This study develops a small, lightweight push-rolling rover and evaluates its ability to climb steep slopes. To meet size requirements, the rover uses a minimal configuration. Experiments to measure resistance and drawbar pull forces during push-rolling revealed that a lugged wheel and dynamic sinking behavior using an intentional slip increased the total thrust forces. Additionally, travel experiments showed that the developed rover, with its optimal configuration, demonstrated a high climbing ability on slopes greater than 30°.
期刊介绍:
The Journal of Terramechanics is primarily devoted to scientific articles concerned with research, design, and equipment utilization in the field of terramechanics.
The Journal of Terramechanics is the leading international journal serving the multidisciplinary global off-road vehicle and soil working machinery industries, and related user community, governmental agencies and universities.
The Journal of Terramechanics provides a forum for those involved in research, development, design, innovation, testing, application and utilization of off-road vehicles and soil working machinery, and their sub-systems and components. The Journal presents a cross-section of technical papers, reviews, comments and discussions, and serves as a medium for recording recent progress in the field.